• Title/Summary/Keyword: Mixed-gas fuel cell

Search Result 28, Processing Time 0.031 seconds

A Study on Influence of Fuel Cell Performance by Hydrogen Odorant (수소가스 부취제가 연료전지의 성능에 미치는 영향 연구)

  • Han, Sang-Won;Oh, Seok-Hwan;Kim, Young-Gyu;Lee, Sung-Hun;Chae, Jae-Ou
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.491-494
    • /
    • 2008
  • The hydrogen fuel and fuel cell which have high energy efficiency and low pollutant emission are getting interest as an alternative energies due to the fossil fuel exhaust, green house effect and atmospheric pollutant problems. The hydrogen gas is very effective as an alternative energy. But, if it is leaked into the air it forms the mixed gas with the air then the danger of the explosion is risen up. So, the secure the safety is mostly important. In this research, to detect the leakage of the hydrogen rapidly, added the odorant materials which don't include the sulfur component into the hydrogen gas and researched on the effect of each odorant on the performance of the fuel cell. As the results, setting the cumulation electric power on the basis and comparing the pure hydrogen, 2,3-Butanedione 5ppm mixed gas 86.1%, 5-Ethylidene-2-Norbornene 17ppm mixed gas 88.2%, Isovaleraldehyde 10ppm mixed gas 74.8%, Ethyl Isobutyrate 2.2ppm mixed gas 93.5% of performance was shown.

  • PDF

Cell Design for Mixed Gas Fuel Cell (혼합가스 주입형 연료전지를 위한 전지 디자인)

  • Park, Byung-Tak;Yoon, Sung Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.860-864
    • /
    • 2005
  • In this study, we fabricated honeycomb type Mixed-Gas Fuel Cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-shaped anode with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites and the others were filled with partial oxidation (POX) catalyst to increase fuel conversion. Furthermore we employed the sol-gel technique which can increase cell performance and decrease carbon coking.

Honeycomb-type Single Chamber SOFC Running on Methane-Air Mixture (Methane-Air 혼합 Gas에서 구동하는 하니컴 형태의 SC-SOFC)

  • Park Byung-Tak;Yoon Sung Pil;Kim Hyun Jae;Nam Suk Woo;Han Jonghee;Lim Tae-Hoon;Hong Seong-Ahn;Lee Dokyol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.306-309
    • /
    • 2005
  • One of the most critical issues in sol id oxide fuel cell (SOFC)running on hydrocarbon fuels is the risk of carbon formation from the fuel gas. The simple method to reduce the risk of carbon formation from the reactions is to add steam to the fuel stream, leading to the carbon gasification react ion. However, the addition of steam to fuel is not appropriate for the auxiliary power unit (APU) and potable power generation (PPG) systems due to an increase of complexity and bulkiness. In this regard, many researchers have focused on so-called 'direct methane' operation of SOFC, which works with dry methane without coking. However, coking can be suppressed only by the operation with a high current density, which may be a drawback especially for the APU and PPG systems. The single chamber fuel cell (SC-SOFC) is a novel simplification of the conventional SOFC into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. Moreover it allows compact and seal-free stack design. In this study, we fabricated honeycomb type mixed-gas fuel cell (MGFC) which has advantages of stacking to the axial direction and increasing volume power density. Honeycomb-structured SOFC with four channels was prepared by dry pressing method. Two alternative channels were coated with electrolyte and cathode slurry in order to make cathodic reaction sites. We will discuss that the anode supported honeycomb type cell running on mixed gas condition.

  • PDF

A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel (가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

Fabrication of Gas Diffusion Layer for Fuel Cells Using Heat treatment Slurry Coating Method (열처리 슬러리코팅법을 이용한 연료전지 가스확산층의 제조)

  • Kim, Sungjin;Park, Sung Bum;Park, Yong-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.65-73
    • /
    • 2012
  • The Gas Diffusion Layer (GDL) of fuel cell, are required to provide both delivery of reactant gases to the catalyst layer and removal of water in either vapor or liquid form in typical PEMFCs. In this study, the fabrication of GDL containing Micro Porous Layer (MPL) made of the slurry of PVDF mixed with carbon black is investigated in detail. Physical properties of GDL containing MPL, such as electrical resistance, gas permeability and microstructure were examined, and the performance of the cell using developed GDL with MPL was evaluated. The results show that MPL with PVDF binder demonstrated uniformly distributed microstructure without large cracks and pores, which resulted in better electrical conductivity. The fuel cell performance test demonstrates that the developed GDL with MPL has a great potential due to enhanced mass transport property due to its porous structure and small pore size.

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

Preparation and Characterization for Carbon Composite Gas Diffusion Layer on Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지에서 탄소복합 기체확산층의 제조와 특성분석)

  • Shim, Joong-Pyo;Han, Choon-Soo;Sun, Ho-Jung;Park, Gyung-Se;Lee, Ji-Jung;Lee, Hong-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2012
  • Gas diffusion layers (GDLs) of carbon composite type in polymer electrolyte fuel cells were prepared by simple and cheap manufacturing process. To obtain the carbon composite GDLs, carbon black with polymer binder was mixed in solvent, rolled to make sheet, and finally heat-treated at $340^{\circ}C$. The performance of fuel cell using composite GDLs was changed by PTFE content. The physical properties of composite GDLs for pore, conductivity and air permeability were analyzed to compare with the variation of fuel cell performance. The conductivity of composite GDLs was very similar to carbon paper as commercial GDL but pore properties and air flux were considerably different. The porosity, PTFE content and conductivity for composite GDLs did not have an influence on the cell performance much. The increase of pore diameter and air flux led to enhance cell performance.