• Title/Summary/Keyword: Mixed-Flow Fan

Search Result 17, Processing Time 0.021 seconds

Performance analysis of mixed-flow fans considering the low flow characteristics (저유량 특성을 고려한 사류 송풍기의 성능 해석)

  • Oh, Hyoung Woo;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.110-115
    • /
    • 2000
  • The mean streamline analysis using the empirical loss correlations has been developed for performance prediction of industrial mixed-flow fan impellers in the present study. New simple, but effective, models for the additional Euler input work characteristic and an internal recirculation loss due to internal flow reversal under the low flowrate conditions are proposed in this paper. Comparison of overall performance predictions with six sets of test data of mixed-flow fans is accomplished to demonstrate the accuracy of the proposed models. Predicted performance curves by the present set of loss models agree fairly well with experimental data for a variety of mixed-flow fan impellers over the entire operating conditions. The prediction method presented herein can be used efficiently in the conceptual design phase of mixed-flow fan impellers.

  • PDF

Numerical analysis for the development of a Mixed-flow In-line duct fan with a high performance (고성능 사류식 In-line duct fan의 개발을 위한 전산해석)

  • Kim, Sung-Kon;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.604-609
    • /
    • 2001
  • This numerical analysis uses the lifting surface method and frequency-domain panel method based on the linear compressible aerodynamic theory. Increased knowledge of flow conditions within mixed-flow fan should indicates means of improving performance of these turbomachines. Thus, only an approximate solution is obtained whose prime intent is to recognize the most significant characteristics of the "ideal" geometry. For a given set of operating condition, the flow conditions within mixed-flow fan depend on the geometry of the machine (three-dimensional flow effects) and on the properties of the fluid. But most treatments of the problem have been concerned with the two-dimensional flow effects for incompressible, non-viscous fluids. Interest in the field of mixed-flow fan resulted in the undertaking of a program to develop reliable design procedures that would avoid the need for lengthy development work.

  • PDF

Flow analysis and design optimization of a mixed-flow fan (사류송풍기의 유동해석 및 최적설계)

  • Seo, Seoung-Jin;Jun, Jae-Wook;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.684-689
    • /
    • 2001
  • In this study, three-dimensional viscous flow analysis and optimization are presented for the design of a mixed-flow fan. Steady, imcompressible, three-dimensional Reynolds averaged Navier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Upwind difference scheme is used for the discretization of the convective term and SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational results are compared with the results obtained by TASCflow. For the numerical optimization of the design, objective function is defined as a ratio of generation of the turbulent energy to pressure head. Sweep angles are used as design variables.

  • PDF

A Numerical Investigation of Flow and Performance Characteristics of a Small Propeller Fan Using Viscous Flow Calculations

  • Oh, Keon-Je;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.386-394
    • /
    • 2002
  • The present work is aimed at investigating an unusual variation in flow and performance characteristics of a small propeller fan at low flow rates. A performance test of the fan showed dual performance characteristics, i.e., radial type characteristics at low flow rates and axial type at high flow rates. Dual performance characteristics of the fan are numerically investigated using viscous flow calculations. The Finite Volume Method is used to solve the continuity and Navier-Stokes equations in the flow domain around a fan. The performance parameters and the circumferentially averaged velocity components obtained from the calculations are compared with the experimental results. Numerical values of the performance parameters show good agreement with the measured values. The calculation simulates the steep variations of performance parameters at low flow rates and shows the difference in the flow structure between high and low flow rates. At a low flow coefficient of $\Phi$=0.2, the flow enters the fan in an axial direction and is discharged radially outward at its tip, which is much like the flow characteristics of a centrifugal fan. The centrifugal effect at low flow rates makes a significant difference in performance characteristics of the fan. As the inlet flow rate increases, flow around the fan changes into the mixed type at $\Phi$=0.24 and the axial discharge at $\Phi$=0.4.

Performance Characteristics of In-Line Duct Fan Having Mixed Flow Impellers (혼류임펠러를 갖는 관류형팬의 성능특성)

  • Park, Jin-Wook;Lee, Chul-Hyung;Park, Wan-Soon;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • The performance of in-line duct fan depends on the design parameters of impeller and guide vane such as sweep back angle of impeller hub, guide vane angle etc. In this study four kinds of impellers having different sweep back angles, $0^{\circ}$, $17.5^{\circ}$, $35^{\circ}$, $52.5^{\circ}$ with 8 guide vanes, and different guide vane angles, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ were selected and their performance measured to investigate the effects of design parameters. The results show that both sweep back angle of impeller hub and the guide vane angle have large effect on the efficiency. Especially, it was found that the mixed flow impellers having sweep back angle between $17.5^{\circ}$ and $35^{\circ}$ gave good performances for in-line duct fan.

Experimental Study on the Three Dimensional Unsteady Flow in a Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 3차원 비정상 유동에 관한 실험적 연구)

  • Park, Hyun-Soo;Cho, Lee-Sang;Cho, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1005-1014
    • /
    • 2004
  • Experiments were done for the three dimensional unsteady flow in a counter-rotating axial flow fan under peak efficiency operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the 45$^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. It has been found that the radial and tangential velocity components disappeared, while the axial velocity component highly increased as soon as the tip vortex was generated. It has been observed that secondary flow and turbulence intensity which were increased by the front rotor were dissipated passing through the rear rotor. As the result the energy loss of the counter rotating axial flow fan decreased at the downstream of rear rotor. Also, it has been verified that tip vortex pattern of the rear rotor was dampened because the tip vortex generated by front rotor was mixed with that of the rear rotor.

A study on the Characteristics of a Centrifugal Fan Vibration and Noise (Centrifugal Fan 송풍기의 진동.소음 특성에 관한 연구)

  • 김태형;김옥현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.999-1003
    • /
    • 1992
  • Because of low noise and small size with huge capacity, a centrifugal fan is widely used for ventilation, air-conditioner and so on, which are very near to human life. Because of the complexity of its vibration and noise generation mechanics, most of researches on them are based on experimental methods. This study is to characterize the centrifugal fan noise and vibration. It is considered that noise is composed of the structural vibration noise and the air flow induced aerodynamic noise. To decouple the structural vibration noise the centrifugal fan is masked with an adhesive tape, such that air blowing is prohibited thus only the structural vibration noise is extracted. The noise level and characteristics in the frequency domain are verified and compared with those of total mixed one. This study shows some significant results that the structural vibration noise has relatively narrow band power spectrum compared with the total mixed one and has a strong periodicity. The sound level is lowered about 5dB by the removal of air flow with the masked fan for an air-conditioner used in this study.

A Study on the Flow Characteristics of Sirocco fan (씨로코팬의 유동특성에 관한 연구)

  • Lee, Duck-Gu;Kim, Geon-Il;Jung, Han-Byul;Sul, Jael-Lim;Lee, Heang-Nam;Park, Gil-Moon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.200-204
    • /
    • 2005
  • The sirocco fan is used to get low noise, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in sirocco fan are investigated by PIV. The experiment using PIV measurement for Test section's flow characteristics acquired velocity distribution, .Condition : when sirocco fan in automobile air controller maximum 1450RPM, and a revolution is a variation (1)950RPM, (2)1100RPM, (3)1250RPM. The agreement a experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating, ventilation and air conditioning.

  • PDF

The Performance Modeling of a Mixed Flow Turbofan Engine (혼합 흐름 터보팬 엔진의 성능해석 모델링)

  • Kim, Sang-Jo;Kim, Dong-Hyun;Kim, Kui-Soon;Son, Chang-Min;Kim, You-Il;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.592-596
    • /
    • 2012
  • The details of engine data are essentially needed for engine modeling and simulation. But, the engine data are kept secret because the information is company's experiential property. In this paper performed the performance modeling of the mixed flow turbofan engine cycles from the general available engine data, and verify the validity.

  • PDF