• Title/Summary/Keyword: Mixed soil method

Search Result 265, Processing Time 0.024 seconds

Comparison the Effect of In-situ Mixing Method and Mixed Laying Method for Construction of Stabilizing Layer on Heavy Metal Contaminated Soil (중금속 오염토양 안정화층 시공을 위한 원위치 교반방식과 혼합포설방식의 효과비교)

  • Lee, Sang-Moo;Kim, Jin-Hwan;Yun, Yeo-Joon;Kim, Yoon-Su;Park, Nam-Seo
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.505-514
    • /
    • 2015
  • In this study, a stabilizing equipment was developed to resolve the problems of existing stabilization construction method for contaminated soil. The field application and workability of the stabilizing equipment were verified through field demonstration tests and laboratory tests. The field application of the stabilizing equipment was identified through field demonstration tests. As a result of laboratory tests for field mixed soil, the mixing capability of stabilizer of the developed construction method was better than that of existing construction method.

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate (혐기성 소화액의 농지환원에 따른 질소 거동)

  • Nkombo, Laure Lysette Chimi;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Dehydration of a Coal Mine Drainage Sludge for the Potential Landfill Cover (탈수 처리된 석탄 광산 슬러지의 복토재 재활용방안)

  • Cui, Ming-Can;Lim, Jung-Hyun;Phyung, Yeaui;Jang, Min;Shim, Yon-Sik;Khim, Jee-Hyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.324-329
    • /
    • 2008
  • A coal mine drainage sludge(designated as CMDS) is mainly generated during physicochemical treatment or electrical purification of the drainage abandoned mine that include dissolved heavy metal. To understand the possibility of an application of the dehydrated CMDS as the landfill cover medium of hygienic a reclaimed ground, an laboratory experiment was performed to investigate the physicochemical and geoengineering characteristics of the dehydrated CMDS. To improve the geoengineering characteristics of the dehydrated CMDS, the liquid limit, plasticity limit test, compaction method test, strength test, and hydraulic conductivity test ware performed with the lithification material mixed sludge. When the mixed ratio of the sludge and the lithification material was more than 1:06, the compaction method was A method, the moisture content less than 33.5%, the strength of mixed sludge was $8.2kg\;cm^{-2}$, the hydraulic conductivity was $2.7\times10^{-6}cm\;sec^{-1}$, the sludge was up to the landfill standard of US Environmental Protection Agency (US EPA).

Simultaneous analysis method of BTEX and TPH in soil (토양중 BTEX와 TPH의 동시분석법에 관한 연구)

  • 신호상;박치후
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.3-8
    • /
    • 2000
  • A simple and rapid simultaneous analysis method of BTEX and TPH in soil was developed. 5g of soil sample were mixed with sodium sulfate and then extracted with 10 mL of mixture of acetone and dichloromethane (1:1). Extraction was performed for 10 min in sonicator and analysis was with GC-FID. The detection limits of BTEX and TPH was 0.8 and 10 mg/kg, respectively. The analytical recoveries were >90% for all BTEX and TPH. Low boiling point fuels and high boiling point fuels are consistently reproduced within RSD 7%. The analysis results show very simple and rapid quantitation of BTEX and TPH in soil sample with low RSD.

  • PDF

Reliability Analysis of a Quay Wall Constructed on the Deep-Cement-Mixed Ground (Part II: Internal Stability of the Improved Soil System) (심층혼합처리지반에 설치된 안벽의 신뢰성해석 (Part II: 개량지반의 내부안정))

  • Huh, Jung-won;Park, Ock-Joo;Kim, Young-Sang;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • A reliability analysis method is proposed in this paper to quantitatively evaluate the risk for internal stability of a quay wall constructed on the deep cement mixed ground, differentiating from the companion paper that mainly describes the external stability. Failure modes for toe pressure, shear strength of improved ground and extrusion of unimproved soft soil are investigated and compared in the risk estimation of internal stability using MVFOSM, FORM, and MCS. From the reliability analysis results for internal stability of a quay wall, the variance and distribution type of the compressive strength of Deep Mixed Soil-Cement appear to be very affective to the failure probability. On the other hand, other random variables seem to be relatively very insensitive to the probability of failure. It is therefore very important to rationally and accurately determine the probabilistic properties of the in-site compressive strength of Deep Mixed Soil-Cement.

Development of Pavement method for Farm Roads (기계화 경작로의 포장공법 개발(지반공학))

  • 송창섭;리신호;오무영;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.431-437
    • /
    • 2000
  • The aim of the work described in this paper is to develope a pavement method for farm road. To this ends, a series of material test are conducted on in-situ soil which was mixed additives-coarse aggregate, polypropylene fiber, excellent soil compound etc. With the laboratory test results, in-situ pavement test was conducted during two years. The serious problem of the pavement is not appeared up to this time. And the measurement of field data is continued presently. The majority merits of this pavement method is low cost and using environmental materials.

  • PDF

Numerical Modeling of Soil-Cement based on Discrete Element Method (개별요소법을 이용한 시멘트 혼합토의 수치모델링)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2016
  • Discrete Element Method was conducted for rock and coarse-grained materials in development of granular mechanics and related numerical model due to analyze and apply micromechanical property. And it was verified that the analysis to consider bonding effect was insufficient. In this study, to overcome limits of existing method, it was conducted to analyze difference between indoor test result and bonding effect using $PFC^{3D)}$. For indoor test of mixed soil, uniaxial compression tests by curing time and by cement content were performed. And, DEM to suitable for each condition of indoor test was conducted. In the result of this study, in terms of geotechnics, it was verified that DEM can be used for application as numerical laboratory as well as prediction of micro and macro behavior about bonding effect of mixed soil.