• Title/Summary/Keyword: Mixed patch array antenna

Search Result 2, Processing Time 0.018 seconds

Wideband Array Antenna Design for Ku-Band Satellite Communications Using Mixed Patches (혼합 패치를 이용한 Ku 대역 위성통신용 광대역 배열 안테나 설계)

  • Seong-hun Kim;Ji-hwan Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.281-286
    • /
    • 2023
  • This paper proposes a design of a wideband array antenna involving the downlink bands of fixed satellite service (FSS) and broadcasting satellite service (BSS) by applying two mixed patch sets. The proposed antenna is implemented on FR4 substrate by arranging rectangular patches in 6 by 2. To design a wideband antenna (10.7~12.75 GHz) covering both FSS downlink bands (10.7~10.95 GHz, 11.2~11.45 GHz) and BSS downlink bands (11.7~12.5 GHz, 12.2~12.75 GHz, 11.7~12.2 GHz), rectangular patches working at 11.5 GHz and 12.5 GHz are arranged alternately, and thus the proposed antenna can obtain a wide bandwidth equivalent to 30.8% of the center frequency. The proposed antenna was fabricated and measured, and the results are well matched with the simulated ones. From the performances, the proposed antenna can be applied to the receiving antenna for FSS and BSS downlinks.

An Analysis of A Circularly Polarized Conformal Microstrip Parch Antenna Using The Unsplit Anisotropic Perfectly Matched Layer(UAPML) (비분리형 비등방성 완전 정합층(UAPML)을 이용한 원형편파 등각 마이크로스트립 패치 안테나의 해석)

  • 박동희;김정기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.813-823
    • /
    • 1998
  • This paper analyzed the circularly polarized conformal microstrip patch antennal using the unsplit anisotropic perfectly matched layer(UAPML) method. Also, this paper are treated effectively the edge and corner parts on the 3 dimensional UAPML. Especially, to analyze microstrip patch antennas with the coaxial feeder line, it was applied to mixed the UAPML with Mur's first order absorbing boundary condition. Therefore this paper suggest the new the method to mix the UAPML with Mur's first order absorbing boundary condition. The results show the time responses of electromagnetics $E_z$ and $H\chi'$, input impedances of coaxial cable and radiation patterns of strip parchs on the single and the array patchs with central frequencies 1.575 GHz, 1.778 GHz and 4.8 GHz in L-band and C-band for mobile communication. The results of this paper shows that its results was compared the Mur's first order abc and mixed the second order dispersion boundary condition(SDBC) with the Mur's first order absorbing boundary condition. In accordance with, the validity of the method is confirmed.

  • PDF