• Title/Summary/Keyword: Mixed concrete

Search Result 1,156, Processing Time 0.035 seconds

A Study on the Improvement of Properties of High Strength Concrete Using Mineral Admixtures (광물질 혼화재 혼합 고강도콘크리트의 제성질 개선에 대한 연구)

  • 문한영;문대중;하상욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.335-340
    • /
    • 1997
  • The mineral admixtures, ground granulated blast furnace slag (GSB) and fly ash (FA), were mixed with ordinary portland cement(OPC) in order to reduce temperature rise and slump loss in concrete. In according to concrete replaced with 30% of GBS, the compressive strength of that developed to 574 kg/$\textrm{cm}^2$ at age of 28days and maximum temperature decreased to the extent of $5^{\cire}C$. When GBS and FA are mixed with concrete, it can be estimated that mix proportions of them have to be taken into consideration.

  • PDF

A Study on the Utilization of mineral Admixture to Improve the Properties of Concrete (콘크리트의 제 성질 향상을 위한 혼화재 활용에 대한 연구)

  • 문한영;문대중;신화철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.124-128
    • /
    • 1997
  • In order tohave a betterunderstanding of thefavorable effect ofground granulated blast-furnace slag and fly ash, slump loss, temperature risingand compressive strength of concrete were investigated into diffrent conditions. When slag was mixed with ordinary portland cement as30%, slump loss gotto some 18% at 60min, maximum temperatureto some $43^{\cire}C$ at 180min, compressive strength similar to that of ordinary portland concrete at 28 days. Therefore it wasnoted thatslump loss andmaximum teaperaturerising of concrete were very reduced according to ground granulated blast-furnace slag and fly ash mixed with ordinary portland cement.

  • PDF

An Experimental Study on the Improvement of Quality of Mixed Aggregate Using Recycled Aggregate (순환골재 사용 혼합골재의 품질 개선을 위한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Kim, Choong-Gyum;Lee, Sea-Hyun;Kim, Han-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • In this study, recycled aggregate and natural aggregate were mixed in advance using an aggregate mixing facility that was developed to improve the quality of recycled aggregate concrete. Then the mixed aggregate was applied and concrete characteristics before and after a mix were considered. Based on the findings extracted, this study aimed to suggest a new direction for quality stabilization and application activation of recycled aggregate. The test results of change rates of mortars and coarse aggregates in fresh concrete mixed by a concrete mixer, before and after mixing aggregates showed that the variations of the mortars and coarse aggregates in the concrete mixed with the aggregates beforehand were decreased than those in the concrete before mixing them. The variation of compressive strength and the mean compressive strength at the ages of 3 and 7 days showed similar results before and after the aggregates were mixed, and the strength at the age of 28 days before and after mixing them showed larger deviation than that at the ages of 3 and 7 days. The use of the mixed aggregates after mixing aggregates beforehand reduced the variation in strength and is believed that it is advantageous for long-age strength development. The above results show that the variations of coarse aggregates and compressive strength in the concrete using the mixed aggregates produced by mixing recycled aggregates and natural aggregates beforehand are reduced so it will be possible to produce the homogeneous concrete by mixing aggregates beforehand.

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Study on compaction characteristics of mixed fill materials(rock and soil) in railway roadbed (철도노반 혼합(흙과 암)성토의 다짐특성에 관한 연구)

  • Kim, Dae-Sang;Park, Seong-Yong;Song, Jong-Woo;Kim, Soo-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Concrete track will be constructed in Gyungbu High Speed Railway II(GHSR II) stage construction site from Daegu to Busan. Concrete track is supported by substructure consisting of the original ground and embankment and does not allow the settlement of track because of its structural type. The embankment is composed of rock and soil mixture and settlement is feasible. So management of settlement of embankment is key point in successful construction of the concrete track. Compaction management of mixed fill materials is important in minimizing the settlement of embankment. In this study, in order to assess the compaction characteristics of mixed fill materials, large laboratory compaction tests were conducted. Mixed fill materials were obtained from two construction sites in GHSR II construction site. Modeled mixed fill materials having different rock type, fine content, maximum particle diameter, and moisture contents were prepared. From the test results, compaction characteristics of mixed fill materials were analysed.

  • PDF

A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant (레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구)

  • Choi, Young-Cheol;Moon, Gyu-Don;Cho, Bong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.

Basic Characteristics of High Performance Concrete Mixing Organic Fiber (유기섬유 복합 혼입 고성능 콘크리트의 기초적 특성)

  • Park, Byung-Kwan;You, Ji-Young;Lee, Joung-Ah;Jin, Cheng-Ri;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.87-91
    • /
    • 2008
  • The study examined fire resistance of concrete followed by change of mixed rate in PP and NY composite fiber and the results were as follows. In the event of fluidity in concrete not set, plane satisfied 600±100, its target slump flow, and fluidity was reduced as organic fiber's mixed rate was increased. Air amount satisfied 3.0±1.0, its target air amount, and didn't have distinct differences in reduction and increase according to organic fiber's kind and change of its mixed rate. However, it had a tendency that fluidity was reduced as the mixed rate was increased. In characteristics of hardening concrete, the 28th day compressive strength followed by organic fiber's kind and change of its mixed rate didn't have a lot of differences and satisfied high strength scope as about 70MPa. In spalling characteristics after fire resistance test, spalling was happened in non-mixture, plane combination, and P1N0. In other combinations, spalling resistance was happened. The relic compressive strength rate was 56%, the best condition, in P3N1(PP0.03%, NY0.01% compositeness) mixing PP fiber with NY fiber at once.

  • PDF

Reasonable Optimum Design of Agricultural Reinforced Concrete Structure - Superstructures of Aqueduct - (농업용 철근콘크리트 구조물의 합리적인 최적설계 -수로교 상부구조물-)

  • Kim, Jong-Ok;Park, Chan-Gi;Cha, Sang-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • This study was conducted to find out the reasonable optimum design method of agricultural reinforced concrete structures. Selected design variables are the dimension of concrete section, reinforced steel area, and objective function is formulated by cost function. To test the reliability, efficiency, possibility of application and reasonability of optimum design method, both continuous optimization method and mixed-discrete optimization method were applied to the design of reinforced concrete superstructure of aqueduct and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of reinforced concrete agricultural structures.

Effect of Deicer on the Concrete and Steel (제설제가 콘크리트 및 강재에 미치는 영향)

  • Lee Byung Duck;Yun Byung Sung;Lee Chan Young;Chung Young Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.375-378
    • /
    • 2005
  • In this study, calcium chloride($CaCl_2$), sodium chloride (NaCl), organic acids-containing deicer(NS 40, NS 100), mixed deicier($NaCl\;70\%\;+\;CaCl_{2}\;30\%,\;NS\;40\;70\%\;+\;CaCl_{2}\;30\%,\;NaCl\;70\%\;+\;NS\;40\;30\%,\;NS\;40\;70\%\;+\;NaCl\;30\%$) is investigated based on the laboratory test for freez-thaw resistance of concrete and corrosion of metal. As a test results, in case of the use chloride-containing deicier in area that concrete structures has subjected to freez-thaw reaction in winter season, it showed desirable method that use deicing chemicals mixed with optimum ratio rather than use one deicing chemicals when is consider to deicing performance and effects, corrosion of steel materials, freez-thaw resistance of concrete. When use various deicing chemicals mixed, NS40($70\%$)+Calcium chloride($30\%$) showed the best effective method.

  • PDF

Chloride Ion Diffusion for Ready Mixed Concrete (설계기준 압축강도별 레미콘의 염소이온 확산 특성평가)

  • Park, Dong-Cheon;Kim, Yong-Ro
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.149-150
    • /
    • 2018
  • The RC buildings which are constructed on the seaside are followed by KBC(2016) to achieve the minimization of durability damage. To control the corrosion of the reinforced steel bar by salt attack, W/C should be under 0.4 and specified concrete strength is more than 35MPa in the concrete/building construction standard specification. Ready mixed concretes which have usually include the admixtures in Busan were tested to certify the salt attack durability. In the same specified concrete strength, remarkable salt attack durability was evaluated in comparison to OPC.

  • PDF