• Title/Summary/Keyword: Mixed carbon sources

Search Result 60, Processing Time 0.024 seconds

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

Influence of Medium Composition on the Production of $\gamma$-Linolenic Acid by Mucor sp. KCTC 8405P (Mucor sp. KCTC 8405P의 배지조성이 감마 리놀렌산의 생산에 미치는 영향)

  • Kang, Hun-Seung;Shin, Hyun-Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.568-573
    • /
    • 1989
  • As a way to determine the optimal culture conditions for the production of ${\gamma}$-linolenic acid by Mucor sp. KCTC 8405P, the influence of different carbon and nitrogen sources, initial pH, and C/N ratio of medium was investigated. Glucose was found to be the best carbon source in terms of lipid content and ${\gamma}$-linolenic acid yield. Ammonium sulfate and organic nitrogen sources such as urea and peptone resulted in relatively increased lipid and ${\gamma}$-linolenic acid production. The highest accumulation of lipid was obtained at a C/N ratio of 56.6 using glucose and (NH$_4$)$_2$SO$_4$ as carbon and nitrogen source, respectively. It was found that the lipid content increased significantly with increasing initial pH of medium up to pH 9.0. The influence of mixed carbon source on the ${\gamma}$-linolenic acid yield was also investigated. High accumulation of lipids, 315 mg/100 ml medium, and 13-14% of ${\gamma}$-linolenic acid content in the cellular lipid were obtained in a shaking culture containing 3% of glucose and 2% sodium acetate as carbon source and 0.1% of (NH$_4$)$_2$SO$_4$ as nitrogen source at pH 8.0.

  • PDF

The Cultural Conditions Affecting the Mycelial Growth of Grifola umbellata (저령의 균사생장에 영향을 미치는 배양조건)

  • Shim, Jae-Ouk;Son, Seo-Gyu;Kim, Yong-Ho;Lee, Youn-Su;Lee, Ji-Yul;Lee, Tae-Soo;Lee, Sang-Sun;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.3 s.82
    • /
    • pp.209-218
    • /
    • 1997
  • This study was carried out to obtain the basic data for artificial culture of Grifola umbellata. The optimal condition for the mycelial growth was obtained at $20^{\circ}C$ and pH 4, respectively. G. umbellata showed the most favorable growth on the Hoppkins media. Carbon sources such as glucose, fluctose and manitol were favorable for stimulating a mycelial growth of G. umbellata. Valine, one of nitrogen sources also appeared to be favorable to a mycelial growth. The optimum C/N ratio was about 30:1 in case that 1% glucose as carbon source was mixed with the basal media. Lactic acid as organic acid was most favorable to the mycelial growth. Also, thiamine-Hcl as vitamin source was favorable. The mineral nutrient of $FeSO_4$ or $MgSO_4$ was most favorable to G. umbellata, and its optimal concentration was about 0.01% in $FeSO_4$ and 0.1 % in $MgSO_4$ respectively. Among 4 different cereal extract media, polished rice extract medium which was mixed with silkworm pupae was most suitable for a favorable growth of G. umbellata.

  • PDF

Surface Sediments of the Continental Shelf and Slope off the Southeastern Coast of Korea (한국 동남해역 대륙붕과 대륙사면 표면퇴적물의 분포와 특성)

  • Lee, Chang-Bok;Park, Yong Ahn;Choi, Jin-Yong;Kim, Gi-Beom
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 1989
  • A total of 139 surface sediment samples, collected from the continental shelf and slope off the southeastern coast of Korea, were analyzed in order to understand their grain-size, mineral composition and organic carbon content. Based on the grain-size characteristics, five surface sedimentary facies were distinguished: sand, clay, mud, sand-mud mixed, and sand-clay mixed facies. The sand facies appears to be composed mostly of relict sand. For mud, most of which seem to be of recent origin, two different sources were suggested, based principally on their areal distribution pattern and the local hydrographic conditions. Heavy mineral composition of the fine-sand size fraction allowed us to distinguish different sand populations from the study area. On the whole, the Hupo Bank sediments showed a high content of garnet, while the sediments from the northern part of the continental shelf were characterized by a relatively high content of metamorphic minerals (kyanite, sillimanite, andalusite, staurolite). Among clay minerals, the most abundant was illite, with chlorite, kaolinite and smectite following in decreasing order. Organic carbon contents in the sediments of the study area were generally high and showed an average value of 1.94%. The sediment grain-size exerted a strong influence on the organic carbon content. The highest organic carbon content, on the other hand, was found in the continental slope sediments.

  • PDF

A Bioreactor for the Production of Viscosifier -A Study on Effect of Nitrogen Source on the Production of Xanthan Gum by Xanthomonas campestris- (증점제 생산을 위한 생물 반응기에 대한 연구 -Xanthomonas Campestris에 의한 Xanthan gum 생산에서 질소원의 영향에 관한 연구-)

  • 김재형;이기영
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.369-377
    • /
    • 1991
  • The effects of nitrogen sources(sodium glutamate and peptone) on the production of xanthan gum were investigated. The fermentation using sodium glutamate as a nitrogen source is longer than that of peptone. In the initial nitrogen concentration of 0.4-1.0g/L, Bs was about 2.0 and ${\beta}$s was 1.2. The optimal yields were obtained when the carbon source/nitrogen concentration was 10-16. The fermentation time and product yields in the fermentation medium of mixed nitrogen source [sodium glutamate-N(0.75g/L)+peptone-N(0.25g/L)] were similar to those of peptone.

  • PDF

Enhanced Production of Maltotetraose-producing Amylase by Recombinant Bacillus subtilis LKS88 in Fed-batch Cultivation

  • KIM, DAE-OK;KYUNGMOON PARK;JAE-WOOK SONG;JIN-HO SEO
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.417-422
    • /
    • 1997
  • Recombinant Bacillus subtilis LKS88[pASA240] containing the amylase gene from Streptomyces albus KSM-35 was exploited in fed-batch cultivation for mass production of maltotetraose-producing amylase. The effects of dissolved oxygen, additional organic nutrients (peptone and yeast extract) and mixed carbon sources (glucose plus soluble starch) on amylase production were examined in fed-batch operations in an effort to determine the optimum conditions for a maximum amylase productivity. Under the optimum conditions, maximum amylase activity was about 4.2 times higher than that obtained in batch cultivations, indicating that mass production of maltotetraose-producing amylase could be accomplished in fed-batch cultivation of the recombinant B. subtilis strain.

  • PDF

Nuclear energy, economic growth and CO2 emissions in Pakistan: Evidence from extended STRIPAT model

  • Muhammad Yousaf Raza;Songlin Tang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2480-2488
    • /
    • 2024
  • Pakistan is a developing country whose maximum amount of mixed energy is provided by electricity, oil, coal, and gas. The study objective is to analyze the six major social factors to describe the significance of nuclear energy and CO2 emissions at the decisive point coming from income, trade, energy, and urbanization. This study has tried to analyze the impact of different factors (i.e., fossil energy, GDP per capita, overall population, urban population, and merchandise trade) on Pakistan's CO2 emissions using the extended STRIPAT model from 1986 to 2021. Ridge regression has been applied to analyze the parameters due to the multicollinearity problem in the data. The results show that (i) all the factors show significant results on carbon emissions; (ii) population and energy factors are the huge contributors to raising CO2 emissions by 0.15% and 0.16%; however, merchandise and GDP per capita are the least contributing factors by 0.12% and 0.13% due to import/export and income level in Pakistan, and (iii) nuclear energy and substitute overall show a prominent and growing impact on CO2 emissions by 0.16% and 0.15% in Pakistan. Finally, empirical results have wider applications for energy-saving, energy substitution, capital investment, and CO2 emissions mitigation policies in developing countries. Moreover, by investigating renewable energy technologies and renewable energy sources, insights are provided on future CO2 emissions reduction.

Biodegradation of Gasoline Oxygenate MTBE(Methyl tert-Butyl Ether) by Butane-Utilizing Bacteria (부탄분해미생물에 의한 가솔린첨가제 MTBE(Methyl tert-Butyl Ether) 분해)

  • 장순웅;백승식;이시진
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.31-41
    • /
    • 2001
  • In this study, we have examined the potential degradation of MTBE(methyl tert-butyl ether) by pure culture ENV425 and mixed culture obtained from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown on n-butane. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane monooxygenase. These cultures grown on n-butane generated TBA (tert-butyl alcohol) as a metabolite of MTBE oxidation. TBA Production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. In resting cell experiments, however, TBA and TBF were detected as the oxidation products of MTBE by ENV425 and mixed culture. The observed maximal MTBE degradation rates were 52.3 and 62.3 (nmol MTBE degraded/hr/mg TSS) by ENV425 and mixed culture, respectively, and the observed maximal transformation yields ($T_y$) were 44.7 and 34.0 (nmol MTBE degraded/$\mu$mol n-butane utilized), and the observed maximal transformation capacities ($T_c$) were 199 and 226 ($\mu$mol MTBE degraded/mg TSS used).

  • PDF

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.

Functional Characterization of khadi Yeasts Isolates for Selection of Starter Cultures

  • Motlhanka, Koketso;Lebani, Kebaneilwe;Garcia-Aloy, Mar;Zhou, Nerve
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.307-316
    • /
    • 2022
  • Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HS-SPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.