• Title/Summary/Keyword: Mixed Particle

Search Result 816, Processing Time 0.027 seconds

Preliminary Study on the Phase Transition of White Precipitates Found in the Acid Mine Drainage (산성광산배수에서 발견되는 흰색침전물의 상전이에 대한 예비 연구)

  • Yeo, Jin Woo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • The white aluminum phases in acid mine drainage usually precipitates when mixed with stream waters with relatively high pH. The minerals in white precipitates play important roles in controlling the behavior of heavy metals by adsorbing and coprecipitation. By the phase transition of these minerals in white precipitates, dissolution and readsorption of heavy metals may occur. This study was conducted to obtain preliminary information on the phase transition of the mineral phases in white precipitates. In this study, the mineral phase changes in the white precipitates collected from the stream around Dogye Mining Site over time were investigated with different pH values and temperatures. White precipitates consist mainly of basaluminite, amorphous $Al(OH)_3$ and a small amount of $Al_{13}$-tridecamer. During aging, the incongruent dissolution of the basaluminite occurs first, increasing the content of the amorphous $Al(OH)_3$. After that, pseudoboehmite is finally precipitated following the precursor phase of pseudoboehmite. At $80^{\circ}C$, this series of processes was clearly observed, but at relatively low temperatures, no noticeable changes were observed from the initial condition with coexisting basaluminite and amorphous $Al(OH)_3$. At high pH, the desorption of $SO{_4}^{2-}$ group in basaluminite was initiated to promote phase transition to the pseudoboehmite precursor. Over time, the solution pH decreases due to the dissolution and phase transition of the minerals, and even after the precipitation of pseudoboehmite, only the particle size slightly increased but no clear cystal form was observed.

Study on Optimum Mixture of Industrial By-Products for Lightweight Foamed Filler Production by Mixture Experimental Design (혼합물 실험계획법에 의한 경량기포 충전재 제조를 위한 산업부산물의 최적 배합 검토)

  • Woo, Yang-Yi;Park, Keun-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This research studied production of lightweight filling production for sink hole restoration utilizing various industrial by-products(2kinds of fly ash, petro-cokes CFBC ash, blast furnace slag fine particle). For this purpose, the mixed raw material properties(compressive strength) behaviors according to the blending ratio of industrial by-products were examined by applying the experimental design method and statistical analysis was performed using the commercial program MINITAB. Compressive strengths of industrial by-products were strongly dependent on blast furnace slag powder. Compressive strength(3days aging) was 3~11MPa depending on the amount of blast furnace slag powder used. The use of CFBC fly ash was evaluated to have the least effect on compressive strength. In addition, the compressive strength and the coefficient of permeability were measured by preparing foamed concrete for the experimental batch 1 condition in the mixture experimental design. In this case, the bulk density is 0.9 to 1.0, the apparent porosity is 30 to 50%, the compressive strength(3days old) is 1 to 2MPa, and the permeability coefficient is $10^{-2}$ to $10^{-3}cm/sec$.

A Study on the Correlation between Strength and Compaction of Porous Concrete Using Bottom Ash Aggregate (바텀애시 골재를 사용한 다공성 콘크리트의 강도와 컴펙션의 상관관계 연구)

  • In-Hwan, Yang;Seung-Tae, Jeong;Ji-Hun, Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this paper, the effect of compression levels on the strengths of porous concrete using bottom ash aggregates was analyzed. Coal bottom ash (CBA) was used as aggregate in porous concrete in this study. The aggregate size types used in the CBA concrete mixtures were catagorized into two different ones. One included only a single aggregate particle size and the other included hybrid aggregate particles mixed at a ratio of 8:2 volume proportion. The water-binder ratio was fixed at 0.30, and the compression levels were applied at 0.5, 1.5, and 3.0 MPa valu es to fabricate a porou s concrete specimen. The total porosity, compressive, splitting tensile, and flexural tensile strengths were tested and analyzed. When the compression level increased, the total porosity decreased, meanwhile the compressive, split tensile, and flexural tensile strengths increased. The total porosity of concrete using hybrid aggregate was lower and the strength was larger than those of concrete using single-type aggregate. Finally, the correlation between the total porosity, compressive, split tensile, and flexural tensile strengths of porous concrete were presented. The total porosity and strength characteristics showed an inversely proportional correlation.

The Hydrogen Reduction Behavior of MoO3 Powder (MoO3 분말의 수소환원거동)

  • Koo, Won Beom;Yoo, Kyoungkeun;Kim, Hanggoo
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The hydrogen reduction behavior of molybdenum oxides was studied using a horizontal-tube reactor. Reduction was carried out in two stages: MoO3 → MoO2 and MoO2 → Mo. In the first stage, a mixed gas composed of 30 vol% H2 and 70 vol% Ar was selected for the MoO3 reduction because of its highly exothermic reaction. The temperature ranged from 550 to 600 ℃, and the residence time ranged from 30 to 150 min. In the second step, pure H2 gas was used for the MoO2 reduction, and the temperature and residence time ranges were 700-750 ℃ and 30-150 min, respectively. The hydrogen reduction behavior of molybdenum oxides was found to be somewhat different between the two stages. For the first stage, a temperature dependence of the reaction rate was observed, and the best curve fittings were obtained with a surface reaction control mechanism, despite the presence of intermediate oxides under the conditions of this study. Based on this mechanism, the activation energy and pre-exponential were calculated as 85.0 kJ/mol and 9.18 × 107, respectively. In addition, the pore size within a particle increases with the temperature and residence time. In the second stage, a temperature dependence of the reaction rate was also observed; however, the surface reaction control mechanism fit only the early part, which can be ascribed to the degradation of the oxide crystals by a volume change as the MoO2 → Mo phase transformation proceeded in the later part.

Effect of AlF3 addition to the plasma resistance behavior of YOF coating deposited by plasma-spraying method (플라즈마-스프레이법에 의해 코팅한 옥시불화이트륨(YOF) 증착층의 플라즈마 내식성에 미치는 불화알루미늄(AlF3) 첨가 효과)

  • Young-Ju Kim;Je Hong Park;Si Beom Yu;Seungwon Jeong;Kang Min Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.153-157
    • /
    • 2023
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we mixed AlF3 powder with the solid-state reacted yttrium oxyfluoride (YOF) in order to increase plasma-etching resistance of the plasma spray coated YOF layer. Effects of the mixing ratio of AlF3 with YOF powder on crystal structure, microstructure and chemical composition were investigated using XRD and FE-SEM. The plasma-etching ratios of the plasma-spray coated layers were calculated and correlation with AlF3 mixing ratio was analyzed.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

Analysis of mechanical properties of secondary concrete products using CO2 captured material (이산화탄소 고정 탄산화물을 적용한 콘크리트 2차 제품의 기초 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Kuem-Dan Park;Hyuk-Joon Kwon;Jeong-Hwan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • In this study, the applicability of CCMs (Carbondioxide conversion capture materials) manufactured by reacting carbon dioxide gas with DG (Desulfurization gypsum) as a cement substitute for secondary concrete products were evaluated and the basic physical properties of CCMs-mixed mortar and concrete specimens were measured to derive the optimal mixing ratio. The main chemical oxides of CCMs were CaO and SO3, and the main crystalline phases were CaSO4·2H2O, Ca(OH)2, CaCO3, and CaSO4. In addition, by the results of particle size analysis and heavy metal measurement, the applicability of CCMs as a cement substitute for secondary concrete products was confirmed. As a result of measuring the strength behavior using mortar and concrete specimens with CCMs, the compressive and flexural strength decreased as the mix ratio of CCMs increased, but requirements by the standards for interlocking blocks and retaining wall blocks, which are target products in this study, were satisfied up to the optimal mixing ratio of 10 wt.% substitution. Therefore, its applicability as a cement substitute for secondary concrete products was confirmed.

Characteristic analysis of mortar using desulfurization gypsum and carbon dioxide conversion capture materials as a cement admixture (탈황석고와 탄산화물을 혼합재로 사용한 모르타르의 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Keum-Dan Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.86-91
    • /
    • 2024
  • In this study, the characteristics of mortar using carbondioxide conversion capture materials (CCMs), fabricated by reacting CO2 with desulfurization gypsum (DG) by-produced from a oil refinery, as a cement mixture. Based on the chemical component and particle size analysis results, it estimated that desulfurized gypsum reacted with carbon dioxide to produce carbonate crystals such as CaCO3. Using CCMs as a cement mixture, physical property and durability analysis were conducted by measuring such as workability, compressive strength, compressive strength ratio after freezing-thawing and accelerated carbonation depth. The experimental results showed that as the content of the admixture increased, workability and compressive strength characteristics decreased. Compressive strength after freezing-thawing and accelerated carbonation depth also showed similar characteristics to the physical property measurement results. In addition, compared to desulfurized gypsum, using CCMs showed better physical properties and durability. This was assumed to be due to differences in the crystal phases of the mixed materials such as free-CaO and CaCO3.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Study on the Soil Improvement in the Grassland I. Effects of the dolomite particle and the shell powder application on soil characteristics, dry matter yield and nutritive value of forages in loam soil (초지에서 토양 개량에 관한 연구 I. 양토에서 도로마이트 입자도와 패각분 시용이 토양특성과 목초의 수량 및 사료가치에 미치는 영향)

  • Lee, J.K.;Choi, S.S.;Kim, M.J.;Park, G.J.;Yoon, S.H.;Shin, J.S.;Shin, D.E.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • This study was conducted to investigate the effects of application of the dolomite particle and the shell powder on soil characteristics, dry matter yield and nutritive value of forages in loam soil at the experimental field of National Livestock Research Institute, Suwon, from 1994 to 1996. Application treatments were control, lime, dolomite 0.5, 2.0, 4.0mm, and shell powder in mixed pasture. Rate of dust occurrence was greatly decreased according to dolomite application and the dissolving rate in soil was highest in shell powder application among treatments. Although there was no significant difference, average dry matter yield of forages for 3 years was slightly increased with the application of lime, shell powder, dolomite 0.5mm, 4.0mm, 2.0mm and control in order. Both Ca and Mg contents of forages were no differences among treatments in 1994. However, all treatments were higher than those of control in 1995. And K and Na contents of forages were no differences among treatments. Lime requirement was greatly increased from 2,630 to 6,150kg per ha with the lapse of time. Although soil hardness was optimum level at first, it was likely to become hard little by little after treatments. Solid phase of soil was lowered a little except for control. Organic matter and available $P_2O_5$ contents of soil were highest in shell powder application among treatments, and K, Ca and Mg contents of soil were no differences among treatments. Ca content was increased a little in 1995, but decreased a little in 1996 compared to that of soil before treatments in 1994. AIso, Mg content was lowered than that of soil before experiment in 1995 and 1996. The results demonstrated that use of dolomite and shell powder as lime substitutes could be reduced dust problem and coast pollution as well as soil improvement. Therefore, it is desirable to apply the dolomite and the shell powder every 3 years in loam soil.

  • PDF