• Title/Summary/Keyword: Mixed Mode fracture

Search Result 165, Processing Time 0.022 seconds

Fracture Toughness of Concrete Brazilian Disk according to Maximum Size of Coarse Aggregate (굵은골재의 최대치수에 따른 콘크리트 브라질리언 디스크의 파괴인성)

  • Lee, Seung-Hoon;Kim, Hee-Sung;Jang, Hee-Suk;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.185-196
    • /
    • 2006
  • Fracture toughness is a material property for crack initiation and propagation in fracture mechanics. For mode I fracture toughness measurement in concrete, RILEM committees 89-FMT proposed three-point bend tests based on the two-parameter fracture model. But, there is no proposed test method as a standard for mixed mode test for now. And RILEM three-point bend test procedure is complicate. Therefore, in this study, brazilian disks of various size were designed as the concrete with a similar specified concrete strength and maximum size of coarse aggregate($G_{max}$) were respectively 20mm and 40mm. And mode I fracture toughness of brazilian disks was compared with that of RILEM three-point bend test. As a result, it was suggested appropriate size(thickness, diameter) and notch length ratio of brazilan disk on the $G_{max}$. And it was verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen. Stress intensity factors of a concrete brazilian disk were evaluated with finite element analysis and five terms approximation for comparison.

Investigation the fracture behavior of high-density polyethylene PE80 weakened by inclined U-notch with end hole

  • Soltaninezhad, Saeed;Goharrizi, Ataallah Soltani;Salavati, Hadi
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.601-609
    • /
    • 2020
  • In this article, the Strain Energy Density (SED) averaged over a well-defined control volume at a notch edge was applied in combination with the Equivalent Material Concept (EMC) to assess the fracture behaviors of some keyhole-notched specimens made of a High-Density Polyethylene (HDPE-PE80) material under mixed-mode loading conditions. An experimental program was performed and 54 new experimental data were totally provided. Additionally, different loading mode ratios were regarded by changing the inclination angles of the notches with respect to the applied load directions. The results obtained from the determined criteria were in good agreement with those of the experimental data.

Effect of Al Amount on the Sintering Behavior and Mechanical Properties of Reaction Bonded Alumina (반응 소결 Alumina의 소결거동과 기계적 성질에 미치는 Al 첨가량의 영향)

  • 장복기;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.519-527
    • /
    • 1997
  • The effect of Al content and heating rate on the sintering behavior, microstructure, and mechanical properties of reaction bonded alumina (RBAO) was investigated. As the heating rate became slower a critical Al content which could be added to RBAO increased. The weight gain and linear shrinkage of RBAO containing of 55 vol% Al were 28% and 6.5%, respectively. The relative density of RBAO decreased from 96 to 94%, as the amount of Al increased from 15 to 55 vol%. The hardness of RBAO increased from 17.8 to 19.9 GPa and the bending strength enhanced from 370 to 570 MPa, as the amount of Al increased from 15 to 55 vol%. On the other hand, the wear rate of RBAO degraded from 6.7 to 3.39$\times$10-5 $\textrm{mm}^2$/kg and the fracture toughness decreased from 4.1 to 3.6 MPa.m1/2, as the amount of Al increased from 15 to 55 vol%. Fracture modes were shown to the mixed mode of inter/transgranular. However, transgranular fracture was dominant with increasing the content of Al.

  • PDF

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

Toughness and Crack Propagation Behavior of The Interfacial Crack in Composite Materials (복합재료내의 계면균열의 인성과 균열진전 거동)

  • Choi, Byung-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • Interfacial crack problems between fiber and matrix in composite materials are discussed. A series of interfacial crack initiation and propagation experiments are conducted using the biaxial loading device for various mode-mixes. Normal crack opening displacement (NCOD) is measured near crack front by a crack opening interferometry and used for extracting fracture parameters. From mixed mode interfacial crack initiation experiments, large increase in toughness with shear components is observed. Initial velocity of crack propagation is very dependent upon the mode-mixes. It increased with positive mode-mix due to the increase of stress singularities ahead of crack front and decreased with negative mode-mix resulting from the increase of the degree of compressive stress behind the crack front. Crack propagation was less accelerated with positive mode-mix than the negative mode-mix.

  • PDF

Stress Intensity Factors for the Mixed Mode in Rotating Disks by Boundary Element Method (경계요소법에 의한 회전원판의 혼합 모우드 응력확대계수)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.148-157
    • /
    • 1996
  • This paper deals with the applicability of linear elastic fracture mechanics under centrifugal force. Stress intensity factors K are calculated as a function of the inclination crack of length 2a, the position at different angular velocities 1200rpm, 2400rpm and at different values of the inclination crack angle .phi. ( .phi. = 0 .deg. , 15 .deg. , 30 .deg. , 45 .deg. , 60 .deg. , 75 .deg. , 90 .deg. ) and are measured in models of rotation disks using a boundary element method. Especially, stress intensity factors $K_{l}$ and $K_{ll}$ obtained separately from the crack tip of the mixed mode, were used to further investigate the influence of $K_{l}$ and $K_{ll}$ on fracture in rotating disks. With the increase in the speed of rotation, the effect of K/ sub l/became larger where as that of $K_{ll}$ became small. For the increase in the inclination crack angle .phi. , a decrease in $K_{l}$ and an increase in $K_{ll}$ were observed.

  • PDF

A Fracture Mechanics Analysis of Bonded Repaired Skin/Stiffener Structures with Inclined Central Crack (경사균열을 갖는 Skin/Stiffener 구조물의 보수에 의한 균열의 파괴역학적 거동)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol;Heo, Sung-Pil;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.292-297
    • /
    • 2001
  • Composite patch repair of cracked aircraft structures has been accepted as one of improving fatigue life and attaining better structural integrity. Analysis for the stress intensity factor at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels are developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior. In order to investigate the crack growth direction, maximum tangential stress(MTS) criteria is used. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stress intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. The research on cracked structure subjected to mixed mode loading is accomplished and it is evident that more work using different approaches is necessary.

  • PDF

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • Kim, K.T.;Suh, J.;Cho, Y.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF