• 제목/요약/키워드: Mixed Metal Powders

검색결과 68건 처리시간 0.023초

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발 (Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide)

  • 정미원;임샛별;문보람;홍태환
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment

  • Yulim Lee;Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2889-2896
    • /
    • 2023
  • The waste acceptance criteria for heavy metals in mixed waste should be developed by reflecting the leaching behaviors that could highly depend on the repository design and environment surrounding the waste. The current standards widely used to evaluate the leaching characteristics of heavy metals would not be appropriate for the silo-type repository since they are developed for landfills, which are more common than a silo-type repository. This research aimed to explore the leaching behaviors of cementitious waste with Pb, Cd, and Sb metallic and oxide powders in an environment simulating a silo-type radioactive waste repository. The Toxicity Characteristic Leaching Procedure (TCLP) and the ANS 16.1 standard were employed with standard and two modified solutions: concrete-saturated deionized and underground water. The compositions and elemental distribution of leachates and specimens were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy (SEM-EDS). Lead and antimony demonstrated high leaching levels in the modified leaching solutions, while cadmium exhibited minimal leaching behavior and remained mainly within the cement matrix. The results emphasize the significance of understanding heavy metals' leaching behavior in the repository's geochemical environment, which could accelerate or mitigate the reaction.

분사성형법에 의한 SiC입자강화 알루미늄 복합재료의 제조 I. 미세조직에 대한 고찰 (Formation of SiC Particle Reinforced Al Metal Matrix Composites by Spray Forming Process(I. Microstructure))

  • 박종성;김명호;배차헌
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.369-381
    • /
    • 1993
  • Aluminum alloy(AC8A) matrix composites reinforced with SiC particles(10% in vol.) were fabricated by Centrifugal Spray Deposition(CSD) process. The microstructures were investigated in order to evaluate both the mixing mode between aluminum matrix and SiC particles, and the effect of SiC particles on the cooling behaviours of droplets during flight and preforms deposited. A non-continuum mathematical calculation was performed to explain and to quantify the evolution of microstructures in the droplets and preforms deposited. Conclusions obtained are as follows; 1. The powders produced by CSD process showed, in general, ligament type, and more than 60% of the powders produced were about 300 to 850 um in size. 2. AC8A droplets solidified during flight showed fine dendritic structure, but AC8A droplets mixed with SiC particles showed fine equiaxed grain structure, and eutectic silicon were formed to crystallize granularly between fine aluminum grains. 3. SiC particles seem to act as a nucleation sites for pro-eutectic silicon during solidification of AC8A alloy. 4. The microstructure of composite powders formed by CSD process showed particle embedded type, and resulted in dispersed type microstructure in preforms deposited. 5. The pro-eutectic silicon crystallized granularly between fine aluminum grains seem to prohibit grains from growth during spray deposition process. 6. The interfacial reactions between aluminum matrix and SiC particles were not observed from the deposit performs and the solidified droplets. 7. The continuum model seem to be useful in connecting the processing parameters with the resultant microstructures. From these results, it was concluded that the fabrication of aluminum matrix composites reinforced homogeneously with SiC particles was possible.

  • PDF

티탄산바륨 분말과 박막의 제조 및 특성 연구 (Preparation and Characterization of BaTiO3 Powders and Thin films)

  • 정미원;손현진;이지윤;김현정
    • 분석과학
    • /
    • 제17권2호
    • /
    • pp.173-179
    • /
    • 2004
  • Ethylene glycol의 polymerization-complex route를 통한 졸-겔 합성법으로 안정하고 균일한 barium titanate 분말 및 박막을 제조하였다. 출발 용액으로 킬레이팅 리간드인 acetylacetone을 barium과 titanium 용액에 치환시켜 합성한 복합 산화물 졸 용액을 사용했을 때 박막을 만들 수 있었다. 졸 용액의 입자 분포도는 안정한 gaussian 분포를 보였으며, $1100^{\circ}C$에서 열처리한 겔 분말의 입자 크기는 40~77 nm이었다. 열분석 및 FT-IR, $^{13}C$ CP/MAS NMR 스펙트라와 XRD 결과로부터 (Ba-Ti)-oxycarbonate 중간상을 거쳐 $BaTiO_3$ 분말이 형성됨을 알 수 있었다. Quartz에 스핀 코팅으로 제조한 박막은 치밀하고 균열 없는 미세 조직을 보였다. $1100^{\circ}C$에서 열처리한 박막 표면의 입자 크기는 220 nm였으며 치밀한 입자 성장을 관찰할 수 있었다.

CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향 (Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders)

  • 조경식;송인범;김재;오명훈;홍재근;박노광
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

Three-dimensional Printing of Shape Memory Alloys

  • Carreno-Morelli, E.;Martinerie, S.;Bidaux, J.E.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.256-257
    • /
    • 2006
  • 3D printing of NiTi alloys has been successfully achieved. A novel printing process has been developed and used, which consists in selective deposition of a solvent on a granule bed. The granules are composed of metal powders and thermoplastic binder, which are mixed and sieved by conventional methods. A sound green strength is obtained after solvent evaporation. Sintered parts exhibit good density, proper phase composition and shape memory behaviour.

  • PDF

전기로제강분진(EAF Dust)을 혼화재로 배합한 콘크리트 공시체의 재료특성 (Material Properties of Concrete Specimens with Electric Arc Furnace Dust as Admixture)

  • 김장호;김석호;김성훈;김동완
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.669-674
    • /
    • 2001
  • Electric Arc Furnace Dust (EAF Dust) Is residual dust produced during the manufacturing of metal products from heavily heated electric arc furnace. Many researches have focused on recycling and reusing EAF Dust for industrial and construction purposes. However, most of these researches were aimed at obtaining useful heavy metal powders by treating toxic metallic materials in EAF Dust. Also, few researches dealt with using EAF Dust as admixture in concrete mixture (i.e., slag dust). In this study, EAF Dust is used as admixture in concrete mixture content considering economical feasibility and construction applicability. The concrete specimens mixed with EAF Dust is then tested in compression and tension to study its strength and ductility as well as its failure mechanism. The compression and tension (by split cylinder test) test results are compared to the results from the specimens without EAF Dust to understand the chemical stability and mechanical characteristic of concrete specimens with EAF Dust. For the experiment, 6 types of admixture added concrete were studied: ⑴Combination of EAF Dust and blast-furnace slag in 1 to 1 ratio, ⑵Combination of EAF Dust and blast-furnace slag in 1 to 2 ratio, ⑶EAF Dust only, ⑷blast-furnace slag only, ⑸fly ash only, and ⑹no admixture. The experimental results show that the strength of EAF Dust added specimen has lower early age strength but higher 28 day strength when compared to other specimens. Also, the Elastic Modulus of EAF Dust is higher(28 days) than other specimens. The study results prove that EAF Dust can be used as an effective admixture in concrete for specific usages.

  • PDF

발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발 (Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology)

  • 이혜진;연시모;손용;이낙규
    • 융복합기술연구소 논문집
    • /
    • 제6권2호
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

저융점 합금(Bi58Sn42)을 이용한 Metal Mesh Touch Sensor용 Ag 페이스트의 전기적 특성 (Electrical Characteristics of the Ag Past with addition of Low-melting Alloy of Bi58Sn42 for Metal Mesh Touch Sensors)

  • 김태형;허영우;김정주;이준형
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.510-515
    • /
    • 2017
  • In this study, a transient liquid phase sintering (TLPS) process of Ag pastes mixed with a fusible metal alloy of Bi58Sn42 with the melting temperature of $138^{\circ}C$, was examined. After screen printing of the Ag pastes with and without Bi58Sn42 powders on polyimide (PI) substrates, the electrodes were heat-treated at different temperatures in the range between 150 and $300^{\circ}C$ for 60 min in air. Comparing the electrical conductivity of the Ag pastes with and without Bi58Sn42 alloy powder after the heat treatment, it was manifested that the low melting temperature alloy definitely played a major role in an increased conductivity when it is added into the Ag pastes by providing more electrical conduction paths between Ag particles. This can be explained by the fact that capillary force of the melts of Bi58Sn42 can contribute to the rearrangement of the Ag particles during the heat-treatment inducing better connectivity between the Ag particles.