• Title/Summary/Keyword: Mixed Fuel

Search Result 608, Processing Time 0.022 seconds

Combustion Characteristics of E.V.A., Rubber Waste Treatment by Fixed-Bed Incinerator. (E.V.A., 고무폐기물 소각에 따른 폐가스 처리의 연구)

  • Bae, Byung-Hoon;Jang, Seong-Ho;Lim, Gyoung-Teck
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.221-227
    • /
    • 1996
  • The objectives of this study are to examine combustion characteristics of E.V.A. and rubber wastes by fixed-bed incinerator, The results are as follows. Combustion temperature with time rises rapidly, and mass of E.V.A. reduces at short time in E.V.A. combustion. In variation of air-fuel ratio (m), ice ideal values of m of E.V.A. and rubber are 2.5, 1.5 respectively. Mixed-waste combustion is more economic than single E.V.A. combustion, because we can get high combustion efficiency (94.0~99.0%) at 2.0 air-fuel ratio of mixed-waste combustion. Removal efficiencies of SO2 at cooling tower are about 20%. The combustion efficiencies of rubber are over 98.0% according to the experimental conditions.

  • PDF

Feasibility Study on the Utilization of Mixed Oxide Fuel in Korean 900MWe PWR Core Through Conceptual Core Nuclear Design and Analysis

  • Joo, Hyung-Kook;Kim, Young-Jin;Jung, Hyung-Guk;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • The neutronic feasibility of typical Korean three-loop 900MWe class PWR core loaded with mixed oxide fuels for both annual and 18-month cycle strategies has been investigated as a means for spent fuel management. For this study, a method of determining equivalent plutonium content was developed under the equivalence concept which gives the same cycle length as uranium fuel. Optimal plutonium zoning within the MOX assembly was also designed with the aim of minimizing the peak md power. Conceptual core designs hate hen developed for equilibrium cycle with the following variations: annual and 18-month cycle, 1/3 and full MOX loading schemes, and typical and high moderation lattice. The analysis of key core physics parameters shows that in all cases considered satisfactory core designs seem to be feasible, though addition of control rod system and change in Technical Specification for soluble boron concentration are required for full MOX loading in order to meet the current design requirements.

  • PDF

A Study on Characteristics for Exhaust Emission with Oxygenated Fuel in an Agricultural DI Diesel Engine (농업용 직접분사식 디젤기관에서 함산소연료 적용시 배기배출물 특성 연구)

  • Choi, S.H.;Oh, Y.T.;So, J.D.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2007
  • In this study, the potential possibility of oxygenates on di-ether group (DBE, dibutyl ether) was investigated as an additives for an agricultural direct injection diesel engine. It tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenates additives blending fuel which has four kinds of mixed ratio. The smoke emission of blending fuel (diesel fuel 80 vol-% + DBE 20 vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 26% at 2500 rpm, full load. And, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of blended fuel was increased compared with commercial diesel fuel.

Simultaneous Reduction of Smoke and NOx with Oxygenated Fuel(DMC) and Cooled EGR method in Diesel Engine (디젤기관에서 함산소연료(DMC)와 Cooled EGR방법에 의한 매연과 NOx의 동시저감)

  • Oh, Y.T.;Choi, S.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for direct injection diesel engine. It is tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate have been investigated. Dimethyl carbonate(DMC) contains oxygen component 53.3% in itself, and it is a kind of effective oxygenated fuel of carbonate group that the smoke emission of DMC is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and EGR method.

  • PDF

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

A Mixed Integer Linear Programming Approach for the Profit Based Unit Commitment Problem under Non-Linear Fuel Consumption Constraint and Maintenance Cost (비선형 연료 제약 및 유지보수 비용을 고려한 Mixed Integer Linear Programming 기반 발전기 주간 운용계획 최적화)

  • Song, Sang-Hwa;Lee, Kyung-Sik
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • This paper considers a profit-based unit commitment problem with fuel consumption constraint and maintenance cost, which is one of the key decision problems in electricity industry. The nature of non-linearity inherent in the constraints and objective functions makes the problem intractable which have led many researches to focus on Lagrangian based heuristics. To solve the problem more effectively, we propose mixed integer programming based solution algorithm linearizing the complex non-linear constraints and objectives functions. The computational experiments using the real-world operation data taken from a domestic electricity power generator show that the proposed algorithm solves the given problem effectively.

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine using Mixed Fuels (혼합연료를 이용한 예혼합 압축착화 디젤엔진의 연소특성)

  • 조병호;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of CO2, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge compression ignition(PCCI), is focused among the various corresponding manners. In this study, we investigated the combustion characteristics of PCCI engine using a mixed fuels with that of commercial diesel engine. Finally we grasped a emission characteristics of PCCI engine. From this experiment, it could be found that NOx reduction is caused by the lower maximum temperature and soot reduction is caused by rapid combustion under diffusion combustion part. Also, it was found that 1st-combustion(cool flame) and 2nd-combustion(hot flame) is appeared in heat release curve, exhaust gas temperature is diminished and combustion variation is increased according to increasing of gasoline ratio.

IRRADIATION TEST OF MOX FUEL IN THE HALDEN REACTOR AND THE ANALYSIS OF MEASURED DATA WITH THE FUEL PERFORMANCE CODE COSMOS

  • WIESENACK WOLFGANG;LEE BYUNG-HO;SOHN DONG-SEONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.317-326
    • /
    • 2005
  • The burning-out of excess plutonium from the reprocessing of spent nuclear fuel and from the dismantlement of nuclear weapons is recently emphasized due to the difficulties in securing the final repository for the spent fuel and the necessity to consume the ex-weapons plutonium. An irradiation test in the Halden reactor was launched by the OECD Halden Reactor Project (HRP) to investigate the in-pile behavior of plutonium-embedded fuel as a form of mixed oxide (MOX) and of inert matrix fuel (IMF). The first cycle of irradiation was successfully accomplished with good integrity of test fuel rods and without any undesirable fault of instrumentations. The test results revealed that the MOX fuel is more stable under irradiation environments than IMF. In addition, MOX fuel shows lower thermal resistance due to its better thermal conductivity than IMF. The on-line measured in-pile performance data of attrition milled MOX fuel are used in the analysis of the in-pile performance of the fuel with the fuel performance code, COSMOS. The COSMOS code has been developed for the analysis of MOX fuel as well as $UO_2$ fuel up to high burnup and showed good capability to analyze the in-reactor behavior of MOX fuel even with different instrumentation.

The Effect of Cooled EGR and Oxygenate Fuel(EGBE) on the Diesel Engine Performance and Emissions (함산소연료(EGBE)와 Cooled EGR이 디젤기관의 성능과 배기배출물에 미치는 영향)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.79-86
    • /
    • 2003
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated fur direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission and unburned hydrocarbons of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.

A Numerical Study on Gas Mixing Time in a Low-Pressure (Driven) Section of a Shock Tube (충격파관 저압실내 가스 혼합시간 예측에 관한 수치해석)

  • Wang, YuanGang;Cho, Cheon Hyeon;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.23-28
    • /
    • 2017
  • The fuel and oxidizer mixing process in the shock tube driven section is simulated numerically. The boundary condition is set based on an shock tube experimental condition. The objective is to predict the gas mixing time for experiments. In the experiment, the amount of fuel to be injected is determined in advance. Then, according to duration of fuel injection, 5 cases with the same fuel mass but different fuel mass flow rate are simulated. After fuel is injected into the driven section, the fuel and air will be mixed with each other through convection and diffusion processes. The mixing time is predicted numerically for experiments.