• Title/Summary/Keyword: Mixed Combustion

Search Result 277, Processing Time 0.029 seconds

Effect of Fuel on the Combustion Reaction of ${\gamma}$-LiAlO$_2$ (${\gamma}$-LiAlO$_2$ 의 연소합성에 미치는 연료의 영향)

  • 박지연;김원주;오석진;정충환;홍계원
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.360-365
    • /
    • 1999
  • The combustion process was applied to synthesize the LiAlO2 powder with high specific surface area and pure crystalline ${\gamma}$-phase. For the combustion synthesis of LiAlO2 which is a binary-component oxide in-cluding lithium and aluminum ions the mixture of citric acid and urea with stoichiometric composition was selected as a promising fuel. The highest combustion temperature was measured in the reaction using the mixed fuel with a stoichiometric composition. The synthesized powder was very fine and its specific surface area was more than 15 m2/g.

  • PDF

A Study on Combustion Characteristics of Pre-mixed $CH_4$-air by Flame Trap (플레임트랩에 의한 메탄-공기 예혼합기의 연소특성에 관한 연구)

  • Kim, Deok-Ho;Lee, Jai-Hyo;Choi, Su-Jin;Cho, Gyu-Back;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.22-28
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And, it is extremely difficult to increase gasoline engine efficiency and to reduce $NO_X$ and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper, a flame trap was used to simulate internal EGR(exhaust gas recirculation) effect. An experimental study was carried out to find combustion characteristics using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). Flame propagation photos and pressure signals were acquired to verify the flame trap effect. The flame trap creates high speed burned gas jet. It achieves higher flame propagation speed and more stable combustion due to the effect of geometry and burned gas jet.

Evaluation of the Prediction Performance of FDS Combustion Models for the CO Concentration of Gas Fires in a Compartment (구획실 내 가스연료 화재의 CO 농도에 대한 FDS 연소모델의 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo;Hwang, Chel-Hong;Yun, Hong-Seok
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The prediction performance of combustion models in the Fire Dynamics Simulator (FDS) were evaluated by comparing with experiment for compartment propane gas fires. The mixture fraction model in the FDS v5.5.3 and Eddy Dissipation Concept (EDC) model in the FDS v6.6.3 were adopted in the simulations. Four chemical reaction mechanisms, such as 1-step Mixing Controlled, 2-step Mixing Controlled, 3-step Mixing Controlled and 3-step Mixed (Mixing Controlled + finite chemical reactions) reactions, were implemented in the EDC model. The simulation results with each combustion model showed similar level for the temperature inside the compartment. The prediction performance of FDS with each combustion model showed significant differences for the CO concentration while no distinguished differences were identified for the $O_2$ and $CO_2$ concentrations. The EDC 3-step Mixing Controlled largely over-predicted the CO concentration obtained by experiment and the mixture fraction model under-predicted the experiment slightly. The EDC 3-step Mixed showed the best prediction performance for the CO concentration and the EDC 2-step Mixing Controlled also predicted the CO concentration reasonably. The EDC 1-step Mixing Controlled significantly under-predict the experimental CO concentration when the previously suggested CO yield was adopted. The FDS simulation with the EDC 1-step Mixing Controlled showed difficulties in predicting the $CO_2$ concentration when the CO yield was modified to predict the CO concentration reasonably.

Analysis of Combustion Characteristics of Bituminous and Anthracite Coal in a Fluidized Bed Combustor (유동층연소로에서 유연탄과 무연탄의 연소특성 해석)

  • Jang, Hyun Tae;Park, Tae Sung;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.586-591
    • /
    • 1999
  • Mixed-firing of a bituminous and an anthracite coal carried out in a batch fluidized bed combustor(0.109 m-I.D., 0.9 m-height). Effect of particle size an mixing fraction of anthracite and bituminous coal combustion characteristics were studied. The temperature profiles and pressure fluctuation properties were measured to interpret the combustion characteristics in a batch fluidized bed combustor. The used domestic anthracite coal has heating value of 2010 kcal/kg and the imported high-calorific bituminous coal has heating value of 6520 kcal/kg. The combustion characteristics in a batch fluidized bed combustor could be interpreted by using pressure fluctuation properties and temperature increasing rates. It was found that the optimum anthracite mixing percentage could be predicted analyzing the combustion rate and fluidization characteristics, The optimum mixing fraction was about 30 %. The different burning region of fluidized bed combustor was measured by temperature increasing rates.

  • PDF

A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen (수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구)

  • Bae, Jaeok;Choi, Minsu;Suh, Hyunuk;Jeon, Chunghwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.

Properties of Cement Mortar According to Mixing of Circulating Fluidized Bed Fly Ash and Pulverized Coal Fly Ash based on Blast Furnace Slag (고로슬래그 기반 순환유동층 플라이애시 및 미분탄 플라이애시 혼입에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the characteristics of the cement mortar replaced with fly ash and ground granulated blast furnace slag generated during circulating fluidized bed combustion method and pulverized coal combustion process were investigated. As a result of the study, when mixed with circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash, it is advantageous not only in terms of strength development but also in terms of durability. The circulating fluidized bed combustor fly ash contributes to the improvement of initial reactivity, and the pulverized coal combustion fly ash is involved in long-term strength development through pozzolanic reaction. Therefore, it can be seen that the mixed use of circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash acts as a complementary factor for cement mortar substituted with ground granulated blast furnace slag.

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity (Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계)

  • Lee, Dae-Won;Sung, Ju Young;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.281-290
    • /
    • 2018
  • As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

Effect of Excess Air and Superficial Air Velocity on Operation Characteristics in a Fluidized Bed Coal Combustor (공탑속도 및 과잉공기비에 따른 석탄유동층연소로의 조업특성)

  • 장현태;차왕석;태범석
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.84-92
    • /
    • 1999
  • The effects of air velocity and excess air on combustion characteristics were studied in a fluidized bed combustor. The domestic low-grade anthracite coal with heating value of 2010 kcal/kg and the imported bituminous coal from Australia with heating value of 6520 kcal/kg were used as coal samples. The combustion characteristics of mixed fuels in a fluidized bed combustor could be interpreted by pressure fluctuation properties, ash distribution and gas emission. The properties of the pressure fluctuations, such as the standard deviation, cross-correlation function, dominant frequency and the power spectral density function, were obtained from the statistical analysis. From this study, the combustion region increased with increasing air velocity but decreased with excess air due to combustion characteristics of anthracite and bituminous coal.

  • PDF

A Study on the Engine Performance and Combustion Characteristics of Fish Oil in a Diesel Engine (디젤기관에서의 어유의 연소특성과 기관성능에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.85-93
    • /
    • 1994
  • The engine performance and combustion characteristics of diesel oil and fish oil blended with diesel oils were investigated at various blending rate of fish oil in a diesel engine. The maximum pressure showed no significant difference among test fuels at low load, but it was higher as the blending rate of fish oil increases at high load. Increasing the blending rate of fish oil, the rate of heat release and burned fraction were higher than those of diesel oil. The ignition delay became longer than that of diesel oil as the blending rate of fish oil increases, and its differences were larger at different loads. The combustion duration and density of smoke were shorter and lower as the blending rate of fish oil increases. The rate of fuel consumption showed no significant difference between diesel oil and fish blended with diesel oils.

  • PDF