• Title/Summary/Keyword: Mixed Al2O3-SiO2 sol

Search Result 6, Processing Time 0.028 seconds

Synthesis and Application of Nanoparticulate Aluminosilicate Sols (II) Mixed Al_2O_3-SiO_2$ Sols (극미세 입자 Aluminosilicate계 졸의 합성 및 응용 (II) Al_2O_3-SiO_2$계 혼합졸)

  • 현상훈;김승구;이성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • A crack-free ceramic composite membrane with micropores has been synthesized by the pressurized sol-gel coating technique using the mixed Al2O3-SiO2 sols. The mixed sols were prepared by mixing nanoparticulate SiO2 and boehmite sols. These sols were more stable at lower pH, but very unstable when their copositions were in the range of 50~75mol% of SiO2 at the same pH. The mixed Al2O3-SiO2 membrane prepared from the mixed sol (0.2mol/$\ell$ of solid content and pH=2) containing 40mol% of SiO2 had the mean pore radius of 0.80nm and the specific surface area of 280$m^2$/g. The nitrogen permeability through the coated Al2O3-SiO2 layer was 42$\times$107mol/$m^2$.s.Pa. It was found that the thermal stability of aluminosilicate membranes, even through similar to that of SiO2 membranes, was much improved in comparison with ${\gamma}$-alumina membranes.

  • PDF

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (I) Preparation of Porous Monolithic Gel in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Method (Sol-Gel법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 결정화 유리의 제조 : (I) Sol-Gel 방법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 겔체의 제조)

  • 조훈성;양중식;권창오;이현호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.535-542
    • /
    • 1993
  • It was investigated in this study that a preparation method, activation energy, surface area, pore volume, pore size distribution and DTA analysis of the dry gel in process of producing monolithic porous gel in Li2O-Al2O3-TiO2-SiO2 system by the sol-gel technique using metal alkoxides. Activation energy for gellation according to the variation of water concentration and the kind of catalysts ranged from 10 to 20kcal/mole. Monolithic dry gels were prepared after drying at 9$0^{\circ}C$ when the amount of water for gellation was 4~8 times more than the stoichiometric amount, that was necessary for the full hydrolysis of the mixed metal alkoxide. The specific surface area, the pore volume, the average pore radius of the dried gel at 18$0^{\circ}C$ according to the various kinds of catalyst were about 348~734$m^2$/g, 0.35~0.70ml/g and 10~35$\AA$, respectively. It showed that the dry gels were porous body. As a result ofthe analysis of DTA, it was confirmed that the exothermaic peaks at 715$^{\circ}C$ and 77$0^{\circ}C$ was clue to the crystallization of dried gel.

  • PDF

Synthesis of Pure Fine Mullite Powders by Sol-Gel Process (졸겔법을 이용한 고순도 Mullite 분말의 합성)

  • 이경희;이병하;김영호;오권오;백용혁
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.503-508
    • /
    • 1991
  • High pure and fine mullite powders were synthesized from Al-secbutoxide[Al(OC4H9)3] and TEOS[Si(OC2H5)4] (SiO2/Al2O3=2/3 mole). Sol-Gel process by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. The mullite precursor was synthesized within 30 hrs, which was reduced about a half of synthetic time in comparison with the other's study. Al-Si spinel was formed at 980℃ and mullite crystal was formed at 1200℃. Mullite powders synthesized in this study was spherical type like those of the other studies and particle sizes were very fine. Also mullite powders calcined at 1,600℃ had a stoichiometric composition (3Al2O3·2SiO2) and lattice constants were coincided with known theoretical values.

  • PDF

Preparation of Ultrafine Mullite Powder from Metal Alkoxides (금속 알콕사이드로부터 Mullite 초미분체의 제조)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.719-724
    • /
    • 2006
  • Ultrafine mullite powder was prepared from aluminium-secbutoxide and tetraethyl orthosilicate(TEOS) in the molar $Al_2O_3/SiO_2$=3/2. Sol-gel method by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. X-ray diffraction, infrared spectroscopy and transmission electron microscopy, etc. confirmed that the mullite powder prepared by this method is in the stoichiometric $Al_2O_3/SiO_2$ ratio. Al-Si spinel was formed at $980^{\circ}C$ and ultrafine mullite powder with about 20 nm particle size was obtained above $1,200^{\circ}C$. Also mullite powders calcined at $1,600^{\circ}C$ had a stoichiometric composition, $3Al_2O_3{\cdot}2SiO_2$ and the lattice constants of the mullite powders calcined above $1,200^{\circ}C$ were almost coincided with theoretical values.

Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2 (금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성)

  • Chun, Kyung-Soo;Tak, Joong-Jae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.568-574
    • /
    • 2007
  • Crack-free dried gel monoliths of the composition $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ have been prepared as a precursor of transparent glass-ceramic by the hydrolysis and polycondensation of mixed metal alkoxides in solutions containing N,N-dimethylformamide as the drying control chemical additive, alcohols, and water. It was investigated that activation energy for gelation according to the variation of water concentration ranged from 13 to 14 kcal/mol. Only when the amount of water for gelation was 3 times higher than the stoichiometric amount, monolithic dry gels were successfully prepared after drying at $70{\sim}75^{\circ}C$ and at a rate of 0.1~0.3%/h. The specific surface area, the pore volume, the average pore diameters of dried gel at $180^{\circ}C$ were about $239.40m^2/g$, 0.001~0.03 mL/g, and $145.62{\AA}$, respectively. It showed that the dried monolithic gel had a porous body. The DTA curve had the first exothermic peak around $800^{\circ}C$ and the 2nd peak around $980^{\circ}C$, which may correspond to crystallization of the gel.

Thermal Development from Hybrid Gels of Compounds for Use in Fibre-Reinforced Oxide Ceramics

  • MacKenzie, Kenneth J.D.;Kemmitt, Tim;Meinhold, Richard H.;Schmucker, Martin;Mayer, Lutz
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.323-330
    • /
    • 1998
  • Mixed oxide compounds of potential usefulness for fibre coatings (hexagonal celsian, $BaAl_2Si_2O_8$ and lanthanum hexaluminate, $LaAl_{11}O_{18}$) or for matrix materials (yttrium aluminium garnet, $Y_3Al_5O_{12}$) were prepared by hybrid sol-gel synthesis and their thermal crystallisation was monitored by thermal analysis, X-ray diffraction and multinuclear solid state MAS NMR. All the gels convert to the crystalline phase below about $12200^{\circ}C$, via amorphous intermediates in which the Al shows and NMR resonance at 36-38 ppm sometimes ascribed to Al in 5-fold coordination. Additional information about the structural changes during thermal treatment was provided by $^{29}Si$, $^{137}Ba$ and $^{89}Y$ MAS NMR spectroscopy, showing that the feldspar framework of celsian begins to be established by about $500^{\circ}C$ but the Ba is still moving into its polyhedral lattice sites about $400^{\circ}C$ after the sluggish onset of crystallization. Lanthanum hexaluminate and YAG crystallise sharply at 1230 and $930^{\circ}C$ respectively, the former via $\gamma-Al_2O_3$, the latter via $YAlO_3$. Yttrium moves into the garnet lattice sites less than $100^{\circ}C$ after crystallisation.

  • PDF