• 제목/요약/키워드: Mitotic Exit Network (MEN)

검색결과 2건 처리시간 0.017초

The Study of Bfa1pE438K Suggests that Bfa1 Control the MitoticExit Network in Different Mechanisms Depending on DifferentCheckpoint-activating Signals

  • Kim, Junwon;Song, Kiwon
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.251-260
    • /
    • 2006
  • During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit via mitotic checkpoints. In budding yeast, mitotic exit is controlled by a regulatory cascade called the mitotic exit network (MEN). The MEN is regulated by a small GTPase, Tem1p, which in turn is controlled by a two-component GAP, Bfa1p-Bub2p. Recent results suggested that phosphorylation of Bfa1p by the polorelated kinase Cdc5p is also required for triggering mitotic exit, since it decreases the GAP activity of Bfa1p-Bub2p. However, the dispensability of GEF Lte1p for mitotic exit has raised questions about regulation of the MEN by the GTPase activity of Tem1p. We isolated a Bfa1p mutant, $Bfa1p^{E438K}$, whose overexpression only partially induced anaphase arrest. The molecular and biochemical functions of $Bfa1p^{E438K}$ are similar to those of wild type Bfa1p, except for decreased GAP activity. Interestingly, in $BFA1^{E438K}$ cells, the MEN could be regulated with nearly wild type kinetics at physiological temperature, as well as in response to various checkpoint-activating signals, but the cells were more sensitive to spindle damage than wild type. These results suggest that the GAP activity of Bfa1p-Bub2p is responsible for the mitotic arrest caused by spindle damage and Bfa1p overproduction. In addition, the viability of cdc5-2 ${\Delta}bfa1 $ cells was not reduced by $BFA1^{E438K}$, suggesting that Cdc5p also regulates Bfa1p to activate mitotic exit by other mechanism(s), besides phosphorylation.

A New Function of Skp1 in the Mitotic Exit of Budding Yeast Saccharomyces cerevisiae

  • Kim, Na-Mil;Yoon, Ha-Young;Lee, Eun-Hwa;Song, Ki-Won
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.641-648
    • /
    • 2006
  • We previously reported that Skp1, a component of the Skp1-Cullin-F-box protein (SCF) complex essential for the timely degradation of cell cycle proteins by ubiquitination, physically interacts with Bfa1, which is a key negative regulator of the mitotic exit network (MEN) in response to diverse checkpoint-activating stresses in budding yeast. In this study, we initially investigated whether the interaction of Skp1 and Bfa1 is involved in the regulation of the Bfa1 protein level during the cell cycle, especially by mediating its degradation. However, the profile of the Bfa1 protein did not change during the cell cycle in skp1-11, which is a SKP1 mutant allele in which the function of Skp1 as a part of SCF is completely impaired, thus indicating that Skp1 does not affect the degradation of Bfa1. On the other hand, we found that the skp1-12 mutant allele, previously reported to block G2-M transition, showed defects in mitotic exit and cytokinesis. The skp1-12 mutant allele also revealed a specific genetic interaction with ${\Delta}bfa1$. Bfa1 interacted with Skp1 via its 184 C-terminal residues (Bfa1-D8) that are responsible for its function in mitotic exit. In addition, the interaction between Bfa1 and the Skp1-12 mutant protein was stronger than that of Bfa1 and the wild type Skp1. We suggest a novel function of Skp1 in mitotic exit and cytokinesis, independent of its function as a part of the SCF complex. The interaction of Skp1 and Bfa1 may contribute to the function of Skp1 in the mitotic exit.