• Title/Summary/Keyword: Mitogen activated protein kinases

Search Result 432, Processing Time 0.028 seconds

Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels

  • Li, Xian;Lu, Yue;Jin, Ye;Son, Jong-Keun;Lee, Seung Ho;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Curcumin is naturally occurring polyphenolic compound found in turmeric and has many pharmacological activities. The present study was undertaken to evaluate anti-allergic inflammatory activity of curcumin, and to investigate its inhibitory mechanisms in immunoglobulin E (IgE)/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and in a mouse model of IgE/Ag-mediated passive systemic anaphylaxis (PSA). Curcumin inhibited cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$) and 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$) generation dose-dependently in BMMCs. To probe the mechanism involved, we assessed the effects of curcumin on the phosphorylation of Syk and its downstream signal molecules. Curcumin inhibited intracellular $Ca^{2+}$ influx via phospholipase $C{\gamma}1$ ($PLC{\gamma}1$) activation and the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) pathway. Furthermore, the oral administration of curcumin significantly attenuated IgE/Ag-induced PSA, as determined by serum $LTC_4$, $PGD_2$, and histamine levels. Taken together, this study shows that curcumin offers a basis for drug development for the treatment of allergic inflammatory diseases.

Inhibitory Effect of Persicaria perfoliata (L.) H. Gross on IgE Mediated Allergic Responses in RBL-2H3 Cells

  • Yoon, Hyun-Seo;Park, Chung-Mu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.163-169
    • /
    • 2020
  • Purpose : This study aimed to investigate the anti-allergic effect of Persicaria perfoliata water extract (PPWE) on IgE stimulated rat basophilic leukemia (RBL-2H3) cell line. Methods : P. perfoliata (L.) H. Gross has been used in traditional medicine as an anti-allergic agent, antipyretic, and diuretic and for respiratory disorders. To analyze the anti-allergic activity of PPWE, release of β-hexosaminidase in RBL-2H3 cells was estimated by enzyme linked immunosorbant assay (ELISA). Also, the cytotoxic effect of PPWE was identified by WST assay, and nuclear factor (NF)-κB and its upstream signaling molecules were assessed by western blot analysis. Results : PPWE treatment significantly attenuated β-hexosaminidase release in a dose dependent manner without any cytotoxicity. PPWE inhibited β-hexosaminidase activity by 38.4±1.2, 36.6±0.6, 32.5±2.2 and 26.5±1.2 at 500, 250, 100, and 50 ㎍/㎖ of PPWE, respectively, compared with the control group. In addition, an analysis of the expression level of NF-κB, an inflammation transcription factor, in RBL-2H3 cells upon IgE stimulation provided reults consistent with the results of β-hexosaminidase release. The phosphorylated status of upstream signaling molecules for transcription factor, mitogen activated protein kinases (MAPKs), was also analyzed. The results showed that PPWE treatment dose-dependently inhibited phosphorylation of extracellular regulatory kinase (ERK) and c-Jun N-terminal kinase (JNK). These results show that PPWE had a strong IgE-mediated degranulation inhibitory effect on RBL-2H3 cells. Conclusion : P. perfoliata ameliorated IgE-mediated allergic reaction via the modulation of MAPK and NF-κB signaling pathway in RBL-2H3 cells. These results indicate that P. perfoliata could be a potential candidate for a treatment strategy against various allergic disorders.

Upregulation of Lipopolysaccharide-Induced Interleukin-10 by Prostaglandin $A_1$ in Mouse Peritoneal Macrophages

  • Kim, Hyo-Young;Kim, Jae-Ryong;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1170-1178
    • /
    • 2008
  • The cyclopentenone prostaglandins (cyPGs) prostaglandin $A_1$ ($PGA_1$) and 15-deoxy-${\Delta}^{12,14}$-prostaglandin $J_2$ (15d-$PGJ_2$) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of $PGA_1$ in lipopolysaccharide (LPS)-induced expression of inter leu kin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-$PGJ_2$ inhibited expression of LPS-induced IL-10, whereas $PGA_1$ increased LPS-induced IL-10 expression. This synergistic effect of $PGA_1$ on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous $PGA_1$ and LPS treatment ($PGA_1$/LPS), and did not require new protein synthesis. The synergistic effect of $PGA_1$ was inhibited by GW9662, a specific peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ antagonist, and Bay-11-7082, a NF-${\kappa}B$ inhibitor. The extracellular signal-regulated kinases (ERK) inhibitor PD98059 increased the expression of $PGA_1$/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, $PGA_1$ inhibited LPS-induced ERK phosphorylation. The synergistic effect of $PGA_1$ on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and $PGA_1$ increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun $NH_2$-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of $PGA_1$ on LPS-induced IL-10 expression is NF-${\kappa}B$-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/JNK signaling pathways, and also associated with the $PPAR{\gamma}$ pathway. Our data may provide more insight into the diverse mechanisms of $PGA_1$ effects on the expression of cytokine genes.

Artesunate inhibits collagen-induced human platelets aggregation through regulation of PI3K/Akt and MAPK pathway (PI3K/Akt 및 MAPK 기전 조절을 통한 Artesunate의 콜라겐 유도의 사람 혈소판 응집 억제효과)

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.57-62
    • /
    • 2022
  • Excessive activation and aggregation of platelets is a major cause of cardiovascular disease. Therefore, inhibition of platelet activation and aggregation is considered an attractive therapeutic target in preventing and treating cardiovascular diseases. In particular, strong platelet activation and aggregation by collagen secreted from the vascular endothelium are characteristic of vascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia species, and has been reported to be effective in anticancer and Alzheimer's disease fields. However, the effect and mechanism of artesunate on collagen-induced platelet activation and aggregation have not been elucidated. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artesunate was clarified. Artesunate inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artesunate decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artesunate strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 106.41 µM. These results suggest that artesunate has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Evaluation of Anti-inflammatory Activities and Mechanisms of Microalga Phaeodactylum tricornutum

  • Kim, Jeong Hwa;Kim, Sang Min;Pan, Cheol-Ho;Choi, Joong-Kook;Lee, Jae Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.61-67
    • /
    • 2013
  • Due to their diversity and abundancy, marine resources have emerged as important biological resources to compensate the limited sources of terrestrial biological materials. Phaeodactylum tricornutum (PT) is one of classical model diatoms most widely studied for its ecology, physiology, biochemistry and molecular biology. In this study, four different PT extracts on lipopolysaccharide (LPS)-stimulated macrophages were compared for anti-inflammatory effect and investigated for the underlying mechanisms. The extracts of PT inhibited nitric oxide production from LPS stimulated RAW 264.7 cells in a dose dependent manner. These extracts also inhibited the expression of mRNA and production of proteins of pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. These inhibitory effects were found to be caused by blockage of nuclear factor-${\kappa}B$ activation and phosphorylation of p38 mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 and c-Jun N-terminal kinase.

Cudrania tricuspidata Suppresses Mast Cell-Mediated Allergic Response In Vitro and In Vivo (꾸지뽕나무 추출물의 비만세포 억제에 의한 항알레르기 효과 및 기전)

  • Kim, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.26-34
    • /
    • 2012
  • Mast cells play an important role in early and late phase allergic reactions through allergen and IgE-dependent release of histamine, proteases, prostaglandins, and several multifunctional cytokines. In this study, we investigated whether Cudrania tricuspidata extract (CTE) suppresses IgE-mediated allergic responses in mast cells, an allergic animal model, and its mechanism of action in mast cells. We found that CTE inhibited IgE-mediated degranulation and cytokine production in rat basophilic leukemia (RBL)-2H3 mast cells and bone marrow-derived mast cells (BMMC), as well as passive cutaneous anaphylaxis (PCA) in mice. With regard to its mechanism of action, CTE suppressed the activating phosphorylation of spleen tyrosine kinase (Syk), a key enzyme in mast cell signaling processes and that of LAT, a downstream adaptor molecule of Syk in $Fc{\varepsilon}RI$-mediated signal pathways. CTE also suppressed the activating phosphorylation of mitogen-activated protein (MAP) kinases and Akt. The present results strongly suggest that the anti-allergic activity of CTE is mediated through inhibiting degranulation and allergic cytokine secretion by inhibition of Syk kinase in mast cells. Therefore, CTE may be useful for the treatment of allergic diseases.

Effect of Methyl Gallate on 1-Nitropyrene-Induced Keratinocyte Toxicity in a Human and Canine Skin Model

  • Lee, Woo Jin;Kim, Min Jeong;Choi, Hyun-Wook;Lee, Jeong Jae;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.869-876
    • /
    • 2022
  • The skin, which is the largest organ of the human body, is in direct contact with pollutants in the surrounding atmosphere. Meanwhile, 1-nitropyrene (1-NP), the most abundant nitro-polycyclic aromatic hydrocarbon found in particulate matter, is known to have carcinogenic effects; however, studies on its toxicity in human and canine skin are still needed. In this study, we investigated 1-NP-induced apoptosis and inflammatory pathways in HaCaT cells. In addition, we also measured the cytoprotective effect of methyl gallate (MG), which is widely distributed in medicinal and edible plants and is well known for its anti-inflammatory and antioxidant properties. MG inhibited 1-NP-induced cell death and apoptosis pathways, including the cleavage of PARP and activation of caspase-3, -7, and -9. MG also suppressed 1-NP-induced COX-2 expression and phosphorylation of mitogen-activated protein kinases (MAPKs) and MAPK kinases (MAPKKs). Our findings suggest that 1-NP induces skin toxicity in human and canine through apoptosis and inflammatory responses, and moreover, that this can be prevented by treatment with MG.

Protective Effect of Rice Bran Oil against β-Amyloid Protein-Induced Memory Impairment and Neuronal Death in Mice

  • Jang, Ji Yeon;Lee, Hong Kyu;Yoo, Hwan-Su;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.221-229
    • /
    • 2020
  • This study was undertaken to investigate the protective effect of rice bran oil (RBO) on amyloid β protein (Aβ) (25-35)-induced memory impairment and brain damage in an ICR mouse model. Memory impairment was produced by intracerebroventricular microinjection of 15 nmol Aβ (25-35) and assessed using the passive avoidance test. Treatment with RBO at 0.1, 0.5, or 1 mL/kg (p.o. daily for 8 days) protected against Aβ (25-35)-induced memory impairment. Furthermore, Aβ (25-35)-induced decreases in glutathione and increases in lipid peroxidation and cholinesterase activity in brain tissue were inhibited by RBO, and Aβ (25-35)-induced increases of phosphorylated mitogen-activated protein kinases (MAPKs) and inflammatory factors, and changes in the levels of apoptosis-related proteins were significantly inhibited by RBO. Furthermore, Aβ (25-35) suppressed the PI3K/Akt pathway and the phosphorylation of CREB, but increased phosphorylation of tau (p-tau) in mice brain; these effects were significantly inhibited by administration of RBO. These results suggest that RBO inhibits Aβ (25-35)-induced memory impairment by inducing anti-apoptotic and anti-inflammatory effects, promoting PI3K/Akt/CREB signaling, and thus, inhibiting p-tau formation.

Anti-inflammation Effect of Cyrtomium fortunei J.Sm. Extracts in Lipopolysaccharides-induced Microglia BV2 Cell (LPS로 자극한 microglia BV2 cell에서 Cyrtomium fortunei J.Sm. 추출물의 항염증 효과)

  • Jiwon Choi;Shintae Kim;Sang Yoon Choi;Inwook Choi;Jinyoung Hur
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.3
    • /
    • pp.176-183
    • /
    • 2023
  • In this study, we investigated the effect of the extracts of Cyrtomium fortunei J.Sm. (CFJ) on lipopolysaccharide (LPS) induced inflammation in mouse BV-2 microglial cells. Nitric oxide (NO) production and cell viability were measured using the Griess reagent and the (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) assay. Inflammatory cytokines were detected by quantitative polymerase chain reaction (qPCR) in BV-2 microglial cells with and without CFJ extracts. Subsequently, mitogen-activated protein kinases (MAPKs) and antioxidant markers were assessed by western blot analysis. It was found that the CFJ extract significantly decreased the production of pro-inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-1β) and NO in BV-2 microglial cells that were stimulated with LPS. In addition, the expression levels of the phosphorylation of the MAPK family (p38, c-Jun N-terminal kinases [JNK], and extracellular-signal regulated kinase [ERK]) were reduced by CFJ. Also, treatment with CFJ significantly increased the activities of superoxide dismutase type 1(SOD1) and Catalase in BV-2 microglial cells. Our results indicate that CFJ has a potent suppressive effect on the pro-inflammatory responses of activated BV-2 microglia. Therefore, CFJ has the potential to be an effective treatment for neurodegenerative diseases, as it can inhibit the production of inflammatory mediators in activated BV-2 microglial cells.

Neuroprotective effects of Salacca wallichiana extract against glutamate-induced oxidative stress in mouse Hippocampal HT22 cells (쥐 해마 HT22 세포에서 글루타메이트 유도 산화 스트레스에 대한 Salacca wallichiana 추출물의 신경 보호 효과)

  • Ji Hun Byeon;Ye Yeong Hong;Jungwhoi Lee;Thet Thet Mar Win;Su Su Hlaing;Song-I Han;Jae Hoon Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.250-257
    • /
    • 2023
  • Glutamate is an excitatory neurotransmitter distributed in the central nervous system of mammals. However, high concentrations of glutamate are known to cause neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and stroke by causing nerve cell death. In this study, the antioxidant activity and neuroprotective effect of subtropical natural products were analyzed. Among 11 subtropical plant extracts mainly tested, Sallacca wallichiana extract (SE) showed the greatest free radical scavenging activity. Then, we confirmed through WST-1 assay that SE protected HT22 cells against glutamate-induced cell death in a concentration-dependent manner. The protective effects of SE against glutamate-induced apoptosis in HT22 cells were also confirmed by flow cytometry analysis using Annexin V/PI double staining. We also confirmed using H2DCF-DA single staining that SE inhibits glutamate-induced intracellular reactive oxygen species. And we were confirmed through that SE inhibited glutamate-induced phosphorylation of Mitogen-activated Protein kinases. Consequently, our results propose that SE may contribute to the development of therapeutics to prevent neurodegenerative diseases.