• Title/Summary/Keyword: Mitochondrial stress

Search Result 328, Processing Time 0.026 seconds

Xylene Induces Oxidative Stress and Mitochondria Damage in Isolated Human Lymphocytes

  • Salimi, Ahmad;Talatappe, Behnaz Shoja;Pourahmad, Jalal
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.233-238
    • /
    • 2017
  • Xylene is a cyclic hydrocarbon and an environmental pollutant. It is also used in medical technology, paints, dyes, polishes and in many industries as a solvent; therefore, an understanding of the interaction between xylene and human lymphocytes is of significant interest. Biochemical assessment was used to demonstrate that exposure of lymphocytes to xylene induces cytotoxicity (at 6 hr), generates intracellular reactive oxygen species, collapse of mitochondrial membrane potential, lysosomal injury, lipid peroxidation and depletion of glutathione (at 3 hr). The findings show that xylene triggers oxidative stress and organelle damage in lymphocytes. The results of our study suggest that the use of antioxidant, mitochondrial and lysosomal protective agents can be helpful for individuals subject to chronic exposure to xylene.

Regional Differences in Mitochondrial Anti-oxidant State during Ischemic Preconditioning in Rat Heart

  • Thu, Vu Thi;Cuong, Dang Van;Kim, Na-Ri;Youm, Jae-Boum;Warda, Mohamad;Park, Won-Sun;Ko, Jae-Hong;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2007
  • Ischemic preconditioning (IPC) is known to protect the heart against ischemia/reperfusion (IR)-induced injuries, and regional differences in the mitochondrial antioxidant state during IR or IPC may promote the death or survival of viable and infarcted cardiac tissues under oxidative stress. To date, however, the interplay between the mitochondrial antioxidant enzyme system and the level of reactive oxygen species (ROS) in the body has not yet been resolved. In the present study, we examined the effects of IR- and IPC-induced oxidative stresses on mitochondrial function in viable and infarcted cardiac tissues. Our results showed that the mitochondria from viable areas in the IR-induced group were swollen and fused, whereas those in the infarcted area were heavily damaged. IPC protected the mitochondria, thus reducing cardiac injury. We also found that the activity of the mitochondrial antioxidant enzyme system, which includes manganese superoxide dismutase (Mn-SOD), was enhanced in the viable areas compared to the infarcted areas in proportion with decreasing levels of ROS and mitochondrial DNA (mtDNA) damage. These changes were also present between the IPC and IR groups. Regional differences in Mn-SOD expression were shown to be related to a reduction in mtDNA damage as well as to the release of mitochondrial cytochrome c (Cyt c). To the best of our knowledge, this might be the first study to explore the regional mitochondrial changes during IPC. The present findings are expected to help elucidate the molecular mechanism involved in IPC and helpful in the development of new clinical strategies against ischemic heart disease.

Lonicera japonica inhibited the oxidative Stress induced by the heavy metal (중금속 유도 산화적 스트레스에 대한 금은화의 세포 보호 효과)

  • Yeom, Seung-Hee;Bak, Seon Been;Park, Sun-Dong;Park, Kwang-Il;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • Objectives : Lonicera japonica is known for anti-inflammation and antibiotic effect in Korean medicine. This study aimed for investigating the cytoprotective effect of Lonicera japonica extract (LJE) for HepG2 cells against arachidonic acid (AA)+iron-induced oxidative stress. Methods : The effect of LJE on cell viability was assessed by MTT assay. ROS assay was selected to assess antioxidant effect of LJE. To assess LJE's effect on mitochondrial function, flow cytometric analysis was operated. And immunoblot analysis was used to establish the underlying mechanism of LJE. Results : LJE protected HepG2 cells against AA+iron-induced oxidative stress by phosphorylation of liver kinase B1 and blocked the decline of procaspase 3. Also, LJE preserved the mitochondrial membrane permeability induced by AA+iron. Conclusion : LJE protected the hepatocyte from AA+iron-induced oxidative stress by activation of LKB1 by the preservation of mitochondrial functions.

Bezafibrate prevents aging in in vitro-matured porcine oocytes

  • Kim, Ju-Yeon;Zhou, Dongjie;Cui, Xiang-Shun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.766-777
    • /
    • 2021
  • Bezafibrate, a fibrate drug used as a lipid-lowering agent to treat hyperlipidemia, is a pan-agonist of peroxisome proliferator-activated receptor alpha. It can enhance mitochondrial fatty acid oxidation, oxidative phosphorylation, and mitochondrial biogenesis. After ovulation, oocytes may get arrested at the metaphase II (MII) stage until fertilization beyond optimal timing, which is termed as post-ovulatory aging. Post-ovulatory aging is a disease that degrades DNA, mitochondria, and oxidative system, and has a negative impact on embryo development and quality; however, the impact of bezafibrate during post-ovulatory aging has not been fully defined. In the present study, we assessed the ability of bezafibrate to prevent the progression of aging in in vitro conditions as well as the underlying mechanisms in pigs. An appropriate concentration of this drug (50 µM) was added, and then oxidative stress, reactive oxygen species downstream, mitochondrial biogenesis, and mitochondrial function were analyzed via immunofluorescence staining and real-time polymerase chain reaction. Bezafibrate significantly alleviated reactive oxygen species and ameliorated glutathione production simultaneously in oocytes and embryos. Moreover, it diminished H2A.X and attenuated CASPASE 3 expression produced by oxidative stress in oocytes and embryos. Furthermore, bezafibrate remarkably improved the mitochondrial function and blastocyst quality as well as markedly reduced the mitochondria/TOM20 ratio and mtDNA copy number. The elevated PARKIN level indicated that mitophagy was induced by bezafibrate treatment after post-ovulatory aging. Collectively, these results suggest that bezafibrate beneficially affects against porcine post-ovulatory oocyte aging in porcine by its antioxidant property and mitochondrial protection.

Alterations of Antioxidant Status and Mitochondrial Succinate Dehydrogenase Activity in the Liver of Wistar Strain Albino Rats Treated with by Ethanol Extracts of Annona senegalensis Pers (Annonaceae) Stem Bark

  • Adisa, Rahmat Adetutu;Kolawole, Naimat;Sulaimon, Lateef A.;Brai, Bathlomew;Ijaola, Abraham
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Numerous ethnomedicinal uses have been attributed to different parts of Annona senegalensis (ASE), including its uses as food and food additives. The present study investigated toxicological and antioxidant effects of 28 days administration of ethanol extracts of ASE stem bark to Wistar strain albino rats. Acute toxicity test was done to determine lethal dose in Wistar rats while sub-acute toxicity test was conducted on rats divided into four groups (A - control, B - 50 mg/kg, C - 100 mg/kg, D - 150 mg/kg, respectively and treated for 28 days. Oxidative stress markers in liver and kidney as well as hepatic succinate dehydrogenase activity in the mitochondrial and post mitochondrial fractions (PMF) were evaluated. The $LD_{50}$ value of ASE was > 2,000 mg/kg. White blood cell counts gradually increased, but red blood cell counts and haematocrits level decreased significantly (p < 0.05) by about 50%. Liver enzymes in the serum and mitochondrial succinate dehydrogenase activity increased significantly (p < 0.05). Superoxide dismutase and catalase activities also increased in liver mitochondria and PMF while malondialdehyde (MDA) and reduced glutathione levels increased only in the PMF. Furthermore, only MDA levels increased significantly in the kidney after 28 days extract administration. Histopathological examination showed hepatic necrosis and no obvious signs of nephrotoxicity. Anona senegalensis is relatively safe, but prolonged ingestion could induce oxidative stress and impair ATP synthesis through the modulation of the activity of mitochondrial succinate dehydrogenase.

Mitochondrial DNA Mutation and Oxidative Stress

  • Kim, Tae-Ho;Kim, Hans-H.;Joo, Hyun
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.16.1-16.8
    • /
    • 2011
  • Defects in mitochondrial DNA (mtDNA) cause many human diseases and are critical factors that contribute to aging. The mechanisms of maternally-inherited mtDNA mutations are well studied. However, the role of acquired mutations during the aging process is still poorly understood. The most plausible mechanism is that increased reactive oxygen species (ROS) may affect the opening of mitochondrial voltage dependent anion channel (VDAC) and thus results in damage to mtDNA. This review focuses on recent trends in mtDNA research and the mutations that appear to be associated with increased ROS.

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

Effects of Curcumin on Sperm Motility, Viability, Mitochondrial Activity and Plasma Membrane Integrity in Boar Semen

  • Lee, A-Sung;Lee, Sang-Hee;Lee, Seunghyung;Yang, Boo-Keun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.406-410
    • /
    • 2017
  • Curcumin is known as a natural antioxidant, decreasing oxidative stress in animal cells. Generally, oxidative stress induces reactive oxygen species in sperm and leads to decreased sperm characteristics in pigs. Therefore, this study investigated the influence of curcumin on sperm motility, viability, mitochondrial activity and plasma membrane integrity in pigs. Curcumin (0, 5 and $10{\mu}M$) was treated in boar semen, which were incubated for 9 hours in $37^{\circ}C$. Then, motility, viability, mitochondrial activity, plasma membrane integrity of sperm was analyzed every 3 hours. In the results, sperm motility was significantly increased by $5{\mu}M$ curcumin after 3 and 9 hours after incubation, and viability was significantly higher in $5{\mu}M$ curcumin treatment at 3 hours (P<0.05). Similarly, sperm mitochondrial activity and plasma membrane integrity were significantly increased by $5{\mu}M$ curcumin at 3, 6 and 9 hours after incubation (P<0.05). There results suggest that curcumin improve sperm characteristics such as motility, viability, mitochondrial activity, and plasma membrane integrity, and may exert a positive effect on sperm fertility in pigs.

Effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and endoplasmic reticulum stress of the cardiac muscle in obese middle-aged rats

  • Kim, Kijin;Ahn, Nayoung;Jung, Suryun;Park, Solee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.633-641
    • /
    • 2017
  • The aim of this study is to investigate the effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and ER stress of the cardiac muscle in high fat diet-induced obese middle-aged rats. We induced obesity over 6 weeks of period in 40 male Sprague-Dawley rats around 50 weeks old, and were randomly divided into four experimental groups: chow, HFD, exercise+HFD, and exercise+chow. The exercising groups underwent high-intensity intermittent training using a ladder-climbing and weight exercise 3 days/week for a total of 8 weeks. High-fat diet and concurrent exercise resulted in no significant reduction in body weight but caused a significant reduction in visceral fat weight (p<0.05). Expression of $PPAR{\delta}$ increased in the exercise groups and was significantly increased in the high-fat diet+exercise group (p<0.05). Among the ER stress-related proteins, the expression levels of p-PERK and CHOP, related to cardiac muscle damage, were significantly higher in the cardiac muscle of the high-fat diet group (p<0.05), and were significantly reduced by intermittent ladder-climbing exercise training (p<0.05). Specifically, this reduction was greater when the rats underwent exercise after switching back to the chow diet with a reduced caloric intake. Collectively, these results suggest that the combination of intermittent ladder-climbing exercise training and a reduced caloric intake can decrease the levels of ER stress-related proteins that contribute to cardiac muscle damage in obesity and aging. However, additional validation is required to understand the effects of these changes on mitochondrial biogenesis during exercise.

Monoamine Oxidase Inhibitors Attenuate Cytotoxicity of 1-Methyl-4-phenylpyridinium by Suppressing Mitochondrial Permeability Transition

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.207-212
    • /
    • 2006
  • Mitochondrial permeability transition has been shown to be involved in neuronal cell death. Mitochondrial monoamine oxidase (MAO)-B is considered to play a part in the progress of nigrostriatal cell death. The present study examined the effect of MAO inhibitors against the toxicity of 1-methyl-4-phenylpyridinium $(MPP^+)$ in relation to the mitochondrial permeability transition. Chlorgyline (a selective inhibitor of MAO-A), deprenyl (a selective inhibitor of MAO-B) and tranylcypromine (nonselective inhibitor of MAO) all prevented cell viability loss, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH in differentiated PC12 cells treated with $500\;{\mu}M$$MPP^+$. The MAO inhibitors at $10\;{\mu}M$ revealed a maximal inhibitory effect and beyond this concentration the inhibitory effect declined. On the basis of concentration, the inhibitory potency was tranylcypromine, deprenyl and chlorgyline order. The results suggest that chlorgyline, deprenyl and tranylcypromine attenuate the toxicity of $MPP^+$ against PC12 cells by suppressing the mitochondrial permeability transition that seems to be mediated by oxidative stress.