• Title/Summary/Keyword: Mitochondrial heat shock protein 75

Search Result 2, Processing Time 0.017 seconds

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

The Effects of Injinchunggan-tang(Yinchenqinggan-tang) on DMN-induced Liver Damage by Applying Proteomics (인진청간탕(茵蔯淸肝湯)이 DMN 유발 간섬유화와 단백질 발현에 미치는 영향)

  • Park, Sang-Baek;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.200-218
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the effects of Injinchunggan-tang (Yinchenchinggan-tang) on DMN-induced liver damage by applying proteomics. Materials and Methods : Sprague-Dawley rats were used in this experiment and were divided into the normal group (normal saline), the control group (DMN) and the sample group (DMN+IJCGT). DMN was injected i.p. once a day three times a week for 3 weeks in the control group. Normal saline instead of DMN was administered to the normal group. In the sample group, Injinchunggan-tang (Yinchenchinggan-tang) extract was orally administered once a day for 10 days after DMN was induced. The livers of each group were processed and analyzed by histology, Western blot, $Oxyblot^{TM}$, CBB and 2-dimensional electrophoresis. Results : In the histological findings of the liver, IJCGT reduced collagen deposition and liver damage in DMN-induced hepatic fibrosis. IJCGT increased MMP-13 protein production assessed by western blot. Protein oxidation induced by DMN treatment was decreased by IJCGT. In the 2-dimensional electrophoresis finding, the level of the increased proteins induced by DMN treatment such as GRP 75, 58kDa glucose regulated protein and heat shock 70kDa protein 5 were decreased by IJCGT. IJCGT was considered to have the protective effects on hepatotoxicity induced by DMN. In the 2-dimensional electrophoresis finding, the level of increased oxidized proteins such as heat shock 70 protein, mitochondrial malonyltransferase, calreticulin precursor, actin, NADP-isocitrate dehydrogenase, ankyrin repeat and SOCS box protein 11 were decreased by IJCGT. IJCGT was considered to have protective effect on the protein production induced by DMN treatment. Conclusion : Injinchunggan-tang (Yinchenchinggan-tang) exerts an inhibitory effect against the fibrosis and protein oxidation induced by DMN treatment in the rat liver. IJCGT was considered to have protective effects on the hepatotoxicity and protein production induced by DMN treatment.

  • PDF