• Title/Summary/Keyword: Mitochondrial fusion

Search Result 49, Processing Time 0.028 seconds

Effect of Rhodiola Sachalinensis Administration and Endurance Exercise on Insulin Sensitivity and Expression of Proteins Related with Glucose Transport in Skeletal Muscle of Obese Bucker Rat (홍경천 섭취와 운동수행이 비만 쥐의 인슐린 민감도와 골격근내 당수송 관련 단백질 발현에 미치는 영향)

  • Oh Jae-Keun;Shin Young-Oh;Jung Hee-Jung;Lee Jung-Eun
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • Peripheral insulin resistance in obese/type II diabetes animals results from an impairment of insulin-stimulated glucose uptake into skeletal muscle. Insulin stimulate the translocation of GLUT4 from intracellular location to the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) is implicated in mediation of fusion of GLUT4-containing vesicle with the plasma membrane. Present study investigated regulatory effects of Rhodiola sachalinensis administration and exercise training on the expression of GLUT4 protein and SNAREs protein in skeletal muscles of obese Zucker rats. Experimental animals were randomly assigned into one of five groups ; lean control(LN), obese control(OB), exercise-treated(EXE), Rhodiola sachalinensis-treated(Rho), combine of Rho & EXE (Rho-EXE). All animals of exercise training (EXE, Rho-EXE) performed treadmill running for 8 weeks, and animals of Rho groups (Rho, Rho-EXE) were dosed daily by gastric gavage during the same period. After experiment, blood were taken for analyses of glucose, insulin, and lipids levels. Mitochondrial oxidative enzyme (citrate synthase, CS ; $\beta$-hydroxyacyl-CoA dehydrogenase, $\beta$-HAD) activity were analysed. Skeletal muscles were dissected out for analyses of proteins (GLUT4, VAMP2, syntaxin4, SNAP23). Results are as follows. Exercise and/or Rhodiola sachalinensis administration significantly reduced body weight and improved blood lipids (TG, FFA), and increased insulin sensitivity. Endurance exercise significantly increased the activity of mitochondrial enzymes and the expression of GLUT4 protein, however, administration of Rhodiola sachalinensis did not affect them. The effect of exercise and/or Rhodiola sachalinensis administration on the expression of SNARE proteins was unclear. Our study suggested that improvement insulin sensitivity by exercise and/or Rhodiola sachalinensis administration in obese Zucker rats is independent of expression of SNARE proteins.

Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

  • Han, Xia;Piao, Mei Jing;Kim, Ki Cheon;Hewage, Susara Ruwan Kumara Madduma;Yoo, Eun Sook;Koh, Young Sang;Kang, Hee Kyoung;Shin, Jennifer H;Park, Yeunsoo;Yoo, Suk Jae;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway

  • Ni, Jingyu;Liu, Zhihao;Jiang, Miaomiao;Li, Lan;Deng, Jie;Wang, Xiaodan;Su, Jing;Zhu, Yan;He, Feng;Mao, Jingyuan;Gao, Xiumei;Fan, Guanwei
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.235-247
    • /
    • 2022
  • Background: Ginsenoside Rg3 is one of the main active ingredients in ginseng. Here, we aimed to confirm its protective effect on the heart function in transverse aortic coarctation (TAC)-induced heart failure mice and explore the potential molecular mechanisms involved. Methods: The effects of ginsenoside Rg3 on heart and mitochondrial function were investigated by treating TAC-induced heart failure in mice. The mechanism of ginsenoside Rg3 for improving heart and mitochondrial function in mice with heart failure was predicted through integrative analysis of the proteome and plasma metabolome. Glucose uptake and myocardial insulin sensitivity were evaluated using micro-positron emission tomography. The effect of ginsenoside Rg3 on myocardial insulin sensitivity was clarified by combining in vivo animal experiments and in vitro cell experiments. Results: Treatment of TAC-induced mouse models with ginsenoside Rg3 significantly improved heart function and protected mitochondrial structure and function. Fusion of metabolomics, proteomics, and targeted metabolomics data showed that Rg3 regulated the glycolysis process, and Rg3 not only regulated glucose uptake but also improve myocardial insulin resistance. The molecular mechanism of ginsenoside Rg3 regulation of glucose metabolism was determined by exploring the interaction pathways of AMPK, insulin resistance, and glucose metabolism. The effect of ginsenoside Rg3 on the promotion of glucose uptake in IR-H9c2 cells by AMPK activation was dependent on the insulin signaling pathway. Conclusions: Ginsenoside Rg3 modulates glucose metabolism and significantly ameliorates insulin resistance through activation of the AMPK pathway.

Establishment of the expression system of human HtrA2 in the zebrafish (Zebrafish 동물모델에서 human HtrA2의 expression system 정립에 관한 연구)

  • Cho, Sung-Won;Park, Hyo-Jin;Kim, Goo-Young;Nam, Min-Kyung;Kim, Ho-Young;Ko, In-Ho;Kim, Cheol-Hee;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.571-578
    • /
    • 2006
  • HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death. Several lines of recent evidence suggest that HtrA2 is associated with the pathogenesis of neurodegenerative disorders; however, the physiological function of HtrA2 still remains elusive. For studying physiological function of HtrA2 in depth, it is necessary to develop a suitable expression system in the model animal. We therefore utilized the zebrafish as a model animal to establish expression of human HtrA2 (hHtrA2) in vivo. For expression of mature HtrA2 as GFP fusion in zebrafish embryos, the HtrA2 (WT) or (S306A) cDNAs with the C-terminal GFP tag were inserted into the pCS2+ plasmid. Expression patterns of HtrA2 in HEK293 cells were first monitored by immunofluorescence staining and immunoblot assays, showing approximately 64 kDa of the HtrA2-GFP fusion proteins. Subsequently, the hHtrA2 plasmid DNA or in vitro transcribed mRNA was microinjected into zebrafish embryos. The expression patterns of HtrA2 in Zebrafish embryos were monitored by GFP fluorescence in 24 hours-post-fertilization (hpf). Although expression patterns of HtrA2-GFP in developing embryos were different between the injected DNA and mRNA, both nucleic acids revealed good expression levels to further study the physiological role of HtrA2 in vivo. This study provides a suitable condition for expressing hHtrA2 in the zebrafish embryos as well as a method for generating useful system to investigate physiological properties of the specific human genes.

The Heat Shock Protein 27 (Hsp27) Operates Predominantly by Blocking the Mitochondrial-Independent/Extrinsic Pathway of Cellular Apoptosis

  • Tan, Cheau Yih;Ban, Hongseok;Kim, Young-Hee;Lee, Sang-Kyung
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.533-538
    • /
    • 2009
  • Heat shock protein 27 (Hsp27) is a molecular chaperone protein which regulates cell apoptosis by interacting directly with the caspase activation components in the apoptotic pathways. With the assistance of the Tat protein transduction domain we directly delivered the Hsp27 into the myocardial cell line, H9c2 and demonstrate that this protein can reverse hypoxia-induced apoptosis of cells. In order to characterize the contribution of Hsp27 in blocking the two major apoptotic pathways operational within cells, we exposed H9c2 cells to staurosporine and cobalt chloride, agents that induce mitochondria-dependent (intrinsic) and -independent (extrinsic) pathways of apoptosis in cells respectively. The Tat-Hsp27 fusion protein showed a greater propensity to inhibit the effect induced by the cobalt chloride treatment. These data suggest that the Hsp27 predominantly exerts its protective effect by interfering with the components of the extrinsic pathway of apoptosis.

An Electron Microscopic Study on Type II Pneumonocytes of Lung in O-Chlorobenzylidene Malononitrile (CS) Esposed Albino Rats (O-Chlorobenzylidene Malononitrile (CS)이 폐포간중격 제 2 형 폐포세포의 미세구조에 미치는 영향)

  • Chung, Ho-Sam;Kim, Byung-Ik;Paik, Doo-Zin
    • Applied Microscopy
    • /
    • v.24 no.1
    • /
    • pp.77-85
    • /
    • 1994
  • In order to investigating the pulmonary toxicity of the O-chlorobenzyledene malononitrile (CS), lacrimating agent, $2.6g/m^3$ of CS was inhalated to Sprague-Dawley rats in the plastic chamber for 20 minutes. The ultrastructural changes of type II pneumocytes in the lung were observed with Hitachi 600 transmission electron microscope. The results obtained were as follows: 1. 3 hours after exposure to CS the fusion of surface microvilli, dilatation of cristernae of the rough endoplasmic reticulum, atrophy of Golgi complex and condensation, deletion of lamellated membranes in lamellar bodies were observed in type II pneumocytes. 2. One and 2 days after CS-exposure, disorganization of mitochondrial double membranes, fragmentations of rough endoplasmic reticulum were found in the great alveolar cells. In addition, decrease in amount of polyribosome granules and deletion or condensation of lamellated membranes in lamellar bodies were also observed. 3. 4 days after exposure to CS, the type II pneumocyte revealed new whorled lamellar membranes in lamellar bodies, a few intact rough endoplasmic reticulum and restoration of polyribosome granules. It is consequently suggested that CS induces degenerative changes of cytoplasmic organelles in the type II pneumocytes.

  • PDF

ULTRASTRUCTURAL STUDY ON THE EFFECT OF RADIATION IN THE RAT FETUS TONGUE. (방사선조사가 태내백서의 설조직에 미치는 영향에 관한 전자현미경적 연구)

  • Han Chang Geun
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 1983
  • The author observed the effects of /sup 60/Co irradiation on the development and subcellular structure of tongue tissue of the fetal rats. The lower left abdomen of mothers were exposed to radiation on 15½th day of gestation with 300R. The fetuses were removed on the 6hr, 14hr, 24hr, 48hr and 72hr after irradiation and the light microscopic and electron microscopic observations of the lingual epithelium, lamina propria and muscle layer were carried out. The results were as follows: 1. The irradiated fetuses showed the retardation of filiform papillae formation. 2. Epithelial cells revealed fusion and myelination of mitochondria, large autolysosomes, increased lipid droplets, retardation of tonofilaments and desmosome formation. 3. In the lamina propria, undifferentiated cells showed bleb formation of nuclear membrane, pyknosis and fragmentation of nucleus, edema of cytoplasm I and nucleus, increased auto-lysosomes, dilatation of cell membrane and cell necrosis. Also, collagenous fibril formation was inhibited by irradiation. 4. In the muscle layer, growth of myotubes was inhibited. Myotubes showed swelling of mitochondria, loss of mitochondrial cristae, autolysosomes, retardation of myofibril formation, and large vacuoles. Undifferentiated cells adjacent myotube contained pyknotic nucleus and autolysosomes. 5. Among the various tissues of tongue, it seems that mesenchymal cells were most radiosensitive.

  • PDF

VaSpoU1 (SpoU gene) may be involved in organelle rRNA/tRNA modification in Viscum album

  • Ahn, Joon-Woo;Kim, Suk-Weon;Liu, Jang-Ryol;Jeong, Won-Joong
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.289-295
    • /
    • 2011
  • The SpoU family of proteins catalyzes the methylation of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). We characterized a putative tRNA/rRNA methyltransferase, VaSpoU1 of the SpoU family, from Viscum album (mistletoe). VaSpoU1 and other plant SpoU1s exhibit motifs of the SpoU methylase domain that are conserved with bacterial and yeast SpoU methyltransferases. VaSpoU1 transcripts were detected in the leaves and stems of V. album. VaSpoU1-GFP fusion proteins localized to both chloroplasts and mitochondria in Arabidopsis protoplasts. Sequence analysis similarly predicted that the plant SpoU1 proteins would localize to chloroplasts and mitochondria. Interestingly, mitochondrial localization of VaSpoU1 was inhibited by the deletion of a putative N-terminal presequence in Arabidopsis protoplasts. Therefore, VaSpoU1 may be involved in tRNA and/or rRNA methylation in both chloroplasts and mitochondria.

Physiological Function of NbRanBP1 in Nicotiana benthamiana

  • Cho, Hui-Kyung;Park, Jong-A;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.270-277
    • /
    • 2008
  • This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.

First Record of an Abnormal Bathyraja brachyurops (Rajiformes: Arhynchobatidae) Collected from the Southwest Atlantic Ocean (남서대서양에서 채집된 Bathyraja brachyurops (Rajiformes: Arhynchobatidae) 기형의 첫 보고)

  • Min-Gyoon Park;Eunjung Kim;Jin-Koo Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.916-922
    • /
    • 2023
  • An abnormal shape of Bathyraja brachyurops was first reported from the catch of a bottom trawl in the southwest Atlantic Ocean in June 2022. Both pectoral fins of the specimen did not fuse with the head, resulting in a horn-like structure separated from the sides of the eyes. Analysis of mitochondrial DNA cytochrome c oxidase subunit I sequences showed that our specimen was perfectly matched to Bathyraja brachyurops registered with the National Center for Biotechnology Information. Our specimen possessed the following morphological features: a pair of flexible but elongated and pointed horns on the head; rough dorsal disc, densely covered with numerous small denticles on the head, anterior margin of pectoral fins and median line of the disc; a thorn between the first and second dorsal fins; and a pair of large ocelli at the base of pectoral fins. Unlike the normal B. brachyurops, our specimen had a slender clasper and no nuchal thorns, which may be related to the morphological abnormality. The horn-like structure on the head may be owing to the lack of fusion between the pectoral fins and head during early embryonic development.