• 제목/요약/키워드: Mitochondrial apoptosis

검색결과 593건 처리시간 0.029초

Roles of the Bcl-2/Bax Ratio, Caspase-8 and 9 in Resistance of Breast Cancer Cells to Paclitaxel

  • Sharifi, Simin;Barar, Jaleh;Hejazi, Mohammad Saeid;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8617-8622
    • /
    • 2014
  • The goal of this study was to establish paclitaxel resistant MCF-7 cells, as in vitro model, to identify the molecular mechanisms leading to acquired chemoresistance in breast cancer cells. Resistant cells were developed by stepwise increasing exposure to paclitaxel. Gene expression levels of Bax and Bcl-2 along with protein levels of caspase-8 and caspase-9 were evaluated in two resistant cell lines (MCF-7/Pac64 and MCF-7/Pac5 nM). Morphological modifications in paclitaxel resistance cells were examined by light microscopy and fluorescence activated cell sorting (FACS). As an important indicator of resistance to chemotheraputic agents, the Bcl-2/Bax ratio showed a significant increase in both MCF-7/Pac5nM and MCF-7/Pac 64nM cells (p<0.001), while caspase-9 levels were decreased (p<0.001) and caspase-8 was increased (p<0.001). FACS analysis demonstrated that MCF-7/Pac64 cells were smaller than MCF-7 cells with no difference in their granularity. Our results support the idea that paclitaxel induces apoptosis in a mitochondrial-dependent manner. Identifying breast cancer patients with a higher Bcl-2/Bax ratio and caspase 9 level and then inhibiting the activity of these proteins may improve the efficacy of chemotheraputic agents.

Mutational Analysis of Prohibitin - A Highly Conserved Gene in Indian Female Breast Cancer Cases

  • Najm, Mohammad Zeeshan;Akhtar, Md. Salman;Ahmad, Istaq;Sadaf, Sadaf;Mallick, Mohd Nasar;Kausar, Mohd Adnan;Chattopadhyay, Shilpi;Ahad, Amjid;Zaidi, Shuaib;Husain, Syed Akhtar;Siddiqui, Waseem Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5113-5117
    • /
    • 2012
  • Prohibitin (PHB) is a chaperone protein which is highly conserved evolutionarily. It shows significant homology with the Drosophila cc gene which is considered important for development and differentiation of Drosophila melanogaster. Investigations have revealed an involvement of PHB in cellular proliferation and development, apoptosis, signal transduction, mitochondrial function and regulation of the estrogen and androgen receptors. Therefore, we conducted the present study to analyze mutations in the highly conserved region in Indian female breast cancer patients. Conventional PCR-SSCP and Automated DNA sequencing were performed with a total of 105 breast cancer samples along with adjacent normal tissue. Of the total, 14.2% (15/105) demonstrated a mutation status of prohibitin observed in our study population. We identified a novel missense mutation (Thr>Ser), a novel deletion of T nucleotide in an intron adjacent to intron-exon boundary and a previously determined missense mutation (Val>Ala). A statistically significant correlation was obtained which suggested that prohibitin may be associated with tumor development and/or progression of at least some proportion of breast cancers.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

DOBI is cleaved by caspases during TRAIL-induced apoptotic cell death

  • Park, Sun-Young;Shin, Jin-Na;Woo, Ha-Na;Piya, Su-Jan;Moon, Ae-Ran;Seo, Young-Woo;Seol, Dai-Wu;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.511-515
    • /
    • 2009
  • Downstream of Bid (DOBI) known as Pus10, has been identified as a modulator of TRAIL-induced cell death using RNAi library screening. The crystal structure of DOBI has revealed that it is a crescent-shaped protein containing the pseudouridine synthase catalytic domain and a THUMP-containing domain. Here, we demonstrated that DOBI is expressed in various tissues such as heart and lung, and is also expressed in various tumor cells such as HeLa and A549. Although ectopic expression of DOBI does not promote TRAIL death signaling in HeLa cells, knock-down of DOBI expression using shRNA inhibited TRAIL death signaling. DOBI is cleaved into a 54 kD cleaved DOBI during cell death, and the recombinant DOBI protein can be directly cleaved by caspases-3, or -8 in vitro. Together, these data suggest that the cleaved DOBI may acquire a new function, possibly by cooperating with tBid in the mitochondrial event of cell death caused by TRAIL.

Effect of Ganoderma Lucidum Pharmacopuncture on Chronic Liver Injury in Rats

  • Jang, Sun Hee;Yoon, Hyun Min;Kim, Bum Hoi;Jang, Kyung Jeon;Kim, Cheol Hong
    • Journal of Acupuncture Research
    • /
    • 제32권1호
    • /
    • pp.13-22
    • /
    • 2015
  • Objectives : Alcohol-related liver disease is a major cause of morbidity and mortality worldwide. The present study was undertaken to determine whether Ganoderma lucidum pharmacopuncture(GLP) could protect against chronic liver injury induced by ethanol intoxication in rats. Methods : Sprague-Dawley rats were divided into 4 groups: normal, control, normal saline pharmacopuncture(NP), and GLP, with 8 animals in each. Each group, except normal, received ethanol orally. The NP and GLP groups were treated daily with NP and GLP respectively. The control group was not treated. All rats except the normal group were intoxicated for 4 weeks by oral administration of EtOH(6 g/kg BW). Two acupuncture points were used: Qimen($LR_{14}$) and Taechung($LR_3$). Body weight, histopathological analysis, liver function, activities of antioxidant enzymes, and immunohistochemistry were assessed. Results : GLP reduced the histological changes due to chronic liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase(ALT) and aspartate aminotransferase(AST) enzymes. It significantly reversed the superoxide dismutase(SOD) and the catalase activities(CAT). It also significantly decreased BAX and increased Bcl-2 immunoreactivity expression. Conclusions : This study showed the protective efficacy of GLP against EtOH-induced chronic liver injury in SD rats by modulating ethanol metabolizing enzymes activity, attenuating oxidative stress, and inhibiting mitochondrial damage-mediated apoptosis.

목향(木香) 및 사향(麝香)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향 (The Effect of Aucklandiae Radix.Moschus(木香.麝香)'s for Delayed Neuronal Death in Hypoxia)

  • 정승현;신길조;이원철;문일수;류도균
    • 대한한방내과학회지
    • /
    • 제24권2호
    • /
    • pp.348-357
    • /
    • 2003
  • Objectives : The purpose of this investigation is to evaluate the effects of Aucklandiae Radix Moschus(木香 麝香)and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods : E20 cortical cells used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Aucklandiae Radix Moschus(木香 麝香) was added to the culture media for 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Moschus(麝香)'s effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicate that Aucklandiae Radix(木香)'s effects for neuronal death protection in normoxia and Scutellariae Radix(麝香)'s effects for neuronal death protection in hypoxia were confirmed by LDH assay in culture method of Embryonic day 20(E20) cortical neuroblast. Moschus(麝香)'s mechanism for neuronal death protection in hypoxia is to increase the anti-apoptosis protein Bcl-2. Conclusions : It may be reasonable to propose that Moschus(麝香) protects delayed neuronal death in hypoxia by increasing Bcl-2, thereby reducing mitochondrial permeability transition(PT) pores, the cytochrome c channels.

  • PDF

Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

  • Han, Xia;Piao, Mei Jing;Kim, Ki Cheon;Hewage, Susara Ruwan Kumara Madduma;Yoo, Eun Sook;Koh, Young Sang;Kang, Hee Kyoung;Shin, Jennifer H;Park, Yeunsoo;Yoo, Suk Jae;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.357-366
    • /
    • 2015
  • Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

Identification of Putative Regulatory Alterations Leading to Changes in Gene Expression in Chronic Obstructive Pulmonary Disease

  • Kim, Dong-Yeop;Kim, Woo Jin;Kim, Jung-Hyun;Hong, Seok-Ho;Choi, Sun Shim
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.333-344
    • /
    • 2019
  • Various genetic and environmental factors are known to be associated with chronic obstructive pulmonary disease (COPD). We identified COPD-related differentially expressed genes (DEGs) using 189 samples accompanying either adenocarcinoma (AC) or squamous cell carcinoma (SC), comprising 91 normal and 98 COPD samples. DEGs were obtained from the intersection of two DEG sets separately identified for AC and SC to exclude the influence of different cancer backgrounds co-occurring with COPD. We also measured patient samples named group 'I', which were unable to be determined as normal or COPD based on alterations in gene expression. The Gene Ontology (GO) analysis revealed significant alterations in the expression of genes categorized with the 'cell adhesion', 'inflammatory response', and 'mitochondrial functions', i.e., well-known functions related to COPD, in samples from patients with COPD. Multi-omics data were subsequently integrated to decipher the upstream regulatory changes linked to the gene expression alterations in COPD. COPD-associated expression quantitative trait loci (eQTLs) were located at the upstream regulatory regions of 96 DEGs. Additionally, 45 previously identified COPD-related miRNAs were predicted to target 66 of the DEGs. The eQTLs and miRNAs might affect the expression of 'respiratory electron transport chain' genes and 'cell proliferation' genes, respectively, while both eQTLs and miRNAs might affect the expression of 'apoptosis' genes. We think that our present study will contribute to our understanding of the molecular etiology of COPD accompanying lung cancer.

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.