• 제목/요약/키워드: Mitochondrial activation

검색결과 351건 처리시간 0.026초

소풍순기원(疏風順氣元)이 mouse의 NMu2Li 간세포와 C2C12 골격근세포에서 PPARs 조절의 분자기전에 미치는 영향 (A Molecular Study of Sopungsungi-won(Shufengshunqiyuan) about Regulation of PPARs in Mouse NMu2Li Liver Cells and C2C12 Skeletal Muscle Myogenic Progenital Cells)

  • 오영진;신순식;윤미정;김보경
    • 동의신경정신과학회지
    • /
    • 제20권1호
    • /
    • pp.147-164
    • /
    • 2009
  • Objectives : We investigated the effects of Sopungsungi-won(Shu!engshunqiyuan) (SSEx1, SSEx2) to treat the metabolic syndrome by the molecular mechanism of regulation of PPAR and modulation of mitochondrial MCAD, VLCAD mRNA expression. Methods : Mouse NMu2Li liver cells and C2C12 skeletal muscle myogenic progenital cells were transiently transfected with expression plasmids for PPAR(PPAR${\alpha}$, PPAR${\delta}$), a luciferase reporter gene construct containing 3 copies of the PPRE from the rat acyl-CoA oxidase gene and ${\beta}$-galactosidase gene. Cells were treated with several concentrated kinds of SSEx1, SSEx2 at the initial time of culture and analyzed PPAR${\alpha}$, PPAR${\delta}$ reporter gene activity using spectrophotometer (405 nm). Total RNA was extracted from SSEx1, SSEx2 and measured mRNA levels of mitochondrial MCAD, VLCAD. Representative RT-PCR bands are shown. Results : 1. SSEx1 increased the expression of PPAR${\alpha}$ reporter gene activities at 0.1 ${\mu}$g/ml (p${\mu}$g/ml (p<0.05), SSEx2 at 0.1 ${\mu}$g/ml (p${\mu}$g/ml (p<0.05) significantly in NMu2Li liver cell lines. 2. SSEx1 increased the expression of PPAR${\alpha}$ reporter gene activities at 1 ${\mu}$g/ml (p${\mu}$g/ml (p${\alpha}$ reporter gene activities in C2C12 skeletal muscle cells. 4. SSEx1 increased the modulation of mitochondrial MCAD mRNA expression (p<0.05) significantly in NMu2Li liver cell lines. 5. SSEx1, SSEx2 both increased the modulation of mitochondrial MCAD mRNA expression (p<0.05) significantly in C2C12 skeletal muscle cells. Conclusions : These results show the SSEx1, SSEx2 can be used as therapeutic agent for metabolic syndrome and it's molecular mechanisms of PPAR more contribute to the activation of PPAR${\alpha}$ then PPAR${\delta}$ reporter gene activities and it's total RNA more contribute to the modulation of mitochondrial MCAD then VLCAD mRNA expression.

  • PDF

전립선암 세포주인 PC-3에서 cordycepin에 의해 유도된 세포 내 칼슘농도 변화와 미토콘드리아 기능 상실을 통한 세포사멸 유도 (Cordycepin Induced Apoptosis via Intracellular Ca2+ Modulation and Mitochondrial Dysfunction in Human Prostate Cancer PC-3 Cells)

  • 강동민;김광연;유선녕;진영랑;전현주;김상헌;전성식;고학룡;안순철
    • 생명과학회지
    • /
    • 제21권3호
    • /
    • pp.451-458
    • /
    • 2011
  • Cordycepin은 동충하초로부터 분리한 생리활성 물질로써 항암활성을 가진다고 보고되어 있다. 하지만 그 정확한 항암 기전은 아직 확실하게 밝혀져 있지 않다. 이에 인간 전립선 암 세포주인 PC-3 세포를 이용하여 apoptosis와 그에 관련한 경로를 조사함으로써 cordycepin의 항암효과를 연구하였다. MTT assay를 통해 세포독성을 알아보았고 Annexin-V/PI 염색과 $Ca^{2+}$ 농도, ROS의 생성, MMP의 변화를 관찰하여 apoptosis 경로를 확인하였다. 뿐만 아니라 Western blot analysis를 이용하여 apoptosis와 관련된 단백질의 발현 정도를 확인하였다. 본 연구의 결과에서 cordycepin은 apoptosis 관련 단백질의 발현을 조절함으로써 apoptosis와 관련이 있음을 확인할 수 있었고, 미토콘드리아 관련 apoptosis 경로를 확인한 결과, ROS의 생성, $Ca^{2+}$의 증가 그리고 미토콘드리아 막 전위의 붕괴를 통해 apoptosis 기전이 유도됨을 알 수 있었다. 이상의 결과로부터 cordycepin은 PC-3 세포에 대하여 ROS와 $Ca^{2+}$의 농도 증가를 통해 MMP를 변화시켜 미토콘드리아 관련 apoptosis 기전을 거쳐 caspase의 활성을 증가시킴으로써 apoptosis를 유도함을 알 수 있었다.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • 제16권1호
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도 (High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation)

  • 이수연;주민경;전현민;김초희;박혜경;강호성
    • 생명과학회지
    • /
    • 제29권11호
    • /
    • pp.1179-1191
    • /
    • 2019
  • 암세포는 epithelial mesenchymal transition (EMT)를 통해 tumor invasion과 metastasis가 일어나며, 또한 정상세포와 다른 oncogenic metabolic phenotypes 획득 즉, glycolytic switch 등이 암 발생과 진행에 깊이 연관되어 있음이 잘 알려져 있다. High-mobility group box 1 (HMGB1)은 chromatin-associated nuclear protein으로 알려져 있으나, dying cells 또는 immune cells로부터 방출되기도 한다. 방출된 HMGB1은 damage-associated molecular pattern (DAMP)로서 작용하여 EMT 및 invasion, metastasis를 유도함으로서 tumor progression에 기여한다고 알려졌다. 본 연구에서 HMGB1에 의해 EMT와 glycolytic switch 유도되며, 이 과정은 Snail 의존적임을 확인하였다. 또한 HMGB1/Snail cascade는 COX subunits인 COXVIIa와 COXVIIc의 발현 억제를 통해 mitochondrial repression과 cytochrome c oxidase (COX) inhibition을 유도하였다. HMGB1은 Snail를 통해 glycolytic switch의 주요 효소인 hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), phosphoglycerate mutase 1 (PGAM1)의 발현을 증가시켰다. 이들 효소는 glycolytic switch에 중요하게 관여하는 것으로 알려져 있다. 이들 해당과정의 효소들을 knockdown한 결과 HMGB1에 의한 EMT를 억제함으로써 glycolysis와 HMGB1-induced EMT가 밀접하게 연관되어 있을 제시하였다. 이상의 연구 결과들은 HMGB1/Snail cascade가 EMT 및 glycolytic switch, mitochondrial repression에 중요하게 작용할 것임을 시사한다.

당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과 (Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells)

  • 김병완;윤현정;전현숙;윤형중;김창현;박선동
    • 대한본초학회지
    • /
    • 제21권2호
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Effect of sun ginseng potentiation on epirubicin and paclitaxel-induced apoptosis in human cervical cancer cells

  • Lin, Yingjia;Jiang, Dan;Li, Yang;Han, Xinye;Yu, Di;Park, Jeong Hill;Jin, Ying-Hua
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.22-28
    • /
    • 2015
  • Background: Sun ginseng (SG), a specific formulation of quality-controlled red ginseng, contains approximately equal amounts of three major ginsenosides (RK1, Rg3, and Rg5), which reportedly has antitumor-promoting activities in animal models. Methods: MTT assay was used to assess whether SG can potentiate the anticancer activity of epirubicin or paclitaxel in human cervical adenocarcinoma HeLa cells, human colon cancer SW111C cells, and SW480 cells; apoptosis status was analyzed by annexin V-FITC and PI and analyzed by flow cytometry; and apoptosis pathway was studied by analysis of caspase-3, -8, and -9 activation, mitochondrial accumulation of Bax and Bak, and cytochrome c release. Results: SG remarkably enhances cancer cell death induced by epirubicin or paclitaxel in human cervical adenocarcinoma HeLa cells, human colon cancer SW111C cells, and SW480 cells. Results of the mechanism study highlighted the cooperation between SG and epirubicin or paclitaxel in activating caspase-3 and -9 but not caspase-8. Moreover, SG significantly increased the mitochondrial accumulation of both Bax and Bak triggered by epirubicin or paclitaxel as well as the subsequent release of cytochrome c in the targeted cells. Conclusion: SG significantly potentiated the anticancer activities of epirubicin and paclitaxel in a synergistic manner. These effects were associated with the increased mitochondrial accumulation of both Bax and Bak that led to an enhanced cytochrome c release, caspase-9/-3 activation, and apoptosis. Treating cancer cells by combining epirubicin and paclitaxel with SG may prove to be a novel strategy for enhancing the efficacy of the two drug types.

Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway

  • Ni, Jingyu;Liu, Zhihao;Jiang, Miaomiao;Li, Lan;Deng, Jie;Wang, Xiaodan;Su, Jing;Zhu, Yan;He, Feng;Mao, Jingyuan;Gao, Xiumei;Fan, Guanwei
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.235-247
    • /
    • 2022
  • Background: Ginsenoside Rg3 is one of the main active ingredients in ginseng. Here, we aimed to confirm its protective effect on the heart function in transverse aortic coarctation (TAC)-induced heart failure mice and explore the potential molecular mechanisms involved. Methods: The effects of ginsenoside Rg3 on heart and mitochondrial function were investigated by treating TAC-induced heart failure in mice. The mechanism of ginsenoside Rg3 for improving heart and mitochondrial function in mice with heart failure was predicted through integrative analysis of the proteome and plasma metabolome. Glucose uptake and myocardial insulin sensitivity were evaluated using micro-positron emission tomography. The effect of ginsenoside Rg3 on myocardial insulin sensitivity was clarified by combining in vivo animal experiments and in vitro cell experiments. Results: Treatment of TAC-induced mouse models with ginsenoside Rg3 significantly improved heart function and protected mitochondrial structure and function. Fusion of metabolomics, proteomics, and targeted metabolomics data showed that Rg3 regulated the glycolysis process, and Rg3 not only regulated glucose uptake but also improve myocardial insulin resistance. The molecular mechanism of ginsenoside Rg3 regulation of glucose metabolism was determined by exploring the interaction pathways of AMPK, insulin resistance, and glucose metabolism. The effect of ginsenoside Rg3 on the promotion of glucose uptake in IR-H9c2 cells by AMPK activation was dependent on the insulin signaling pathway. Conclusions: Ginsenoside Rg3 modulates glucose metabolism and significantly ameliorates insulin resistance through activation of the AMPK pathway.

Plumbagin from Plumbago Zeylanica L Induces Apoptosis in Human Non-small Cell Lung Cancer Cell Lines through NF-κB Inactivation

  • Xu, Tong-Peng;Shen, Hua;Liu, Ling-Xiang;Shu, Yong-Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2325-2331
    • /
    • 2013
  • Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-${\kappa}B$ was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-${\kappa}B$ regulated apoptotic-related gene and activation of p65 and $I{\kappa}B{\kappa}$. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 ${\mu}mol/L$, 7.3 ${\mu}mol/L$, and 6.1 ${\mu}mol/L$ for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-${\kappa}B$. In addition to inhibition of NF-${\kappa}B$/p65 nuclear translocation, the compound also suppressed the degradation of $I{\kappa}B{\kappa}$. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-${\kappa}B$ in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-${\kappa}B$-regulated mitochondrial-mediated pathway, involving activation of ROS.

용담사간탕(龍膽瀉肝湯)에 의해 유도된 MAP kinases 활성화를 통한 간암 세포주 HepG2의 세포사멸 (Effect of Yong-dam-sa-gan-tang on apoptosis in human hepatoma HepG2)

  • 윤현정;김한성;허숙경;황성구;박원환;박선동
    • 대한한의학방제학회지
    • /
    • 제15권2호
    • /
    • pp.127-137
    • /
    • 2007
  • The purpose of this study was to investigate the effect of Yong-dam-sa-gan-tang (YST) on apoptosis in HepG2 cells, First of all. to study the cytotoxic effect of methanol extract of YST on HepG2 cells, the cells were treated with various concentrations of YST and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. YST reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of YST. The cleavage of poly AD P-ribose polymerase (P ARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-8 were examined by western blot analysis. YST decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. YST triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, YST also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, this result suggest that YST induced HepG2 cell death through the mitochondrial pathway. Sustained activation of the Ras/Raf/MEK/ERK cascade in cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. YST decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. These results suggest that YST is potentially useful as a chemo-therapeutic agent in HepG2.

  • PDF

皂角刺 추출물의 Nrf2 활성화를 통한 간세포 보호 효과 (Gleditsia Spina Extract Protects Hepatocytes from Oxidative Stress through Nrf2 Activation)

  • 김재광;박상미;제갈경환;김영우;변성희;김상찬;조일제
    • 대한본초학회지
    • /
    • 제30권4호
    • /
    • pp.57-64
    • /
    • 2015
  • Objectives : Oxidative stress is one of the most causes of hepatocyte injury. Gleditsia spina, the thorns ofGleditsia sinensisLam., has been known for its anti-cancer and anti-inflammatory effects in Korean medicine. The present study investigated hepatoprotective effect of Gleditsia spina water extract (GSE) against oxidative stress induced by arachidonic acid (AA) + iron in HepG2 cells.Methods : To investigate cytoprotective effect of GSE, cells were pretreated with GSE and then subsequently exposed to 10 μM AA for 12 h, followed by 5 μM iron. Cell viability was monitored by MTT assay, and expression of apoptosis-related proteins was examined by immunoblot analysis. To identify responsible molecular mechanisms, reactive oxygen species (ROS) production, GSH contents, and mitochondrial membrane potential were measured. In addition, effect of GSE on nuclear factor erythroid 2-related factor 2 (Nrf2) activation was determined by immunoblot and antioxidant response element (ARE)-driven reporter gene assays.Results : GSE pretreatment prevented AA + iron-mediated cytotoxicity in concentration dependent manner. In addition, ROS production, glutathione depletion, and mitochondrial impairment by AA + iron were significantly inhibited by GSE. Furthermore, GSE promoted translocation of Nrf2 to nucleus, which acts as essential transcription factor for induction of antioxidant genes. Increased nuclear Nrf2 that caused by GSE treatment promoted transcriptional activity of ARE. Finally, GSE up-regulated sestrin-2 which was widely recognized as target gene of Nrf2.Conclusions : This study demonstrates that GSE protects hepatocytes from oxidative stress via activation of Nrf2 signaling pathway.