• Title/Summary/Keyword: Mitigation strategy

Search Result 161, Processing Time 0.03 seconds

A Study on the GENCO Adaptive Strategy for the Greenhouse Gas Mitigation Policy (온실가스 감축정책에 따른 발전사업자의 대응 방안에 관한 연구)

  • Choi, Dong-Chan;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.522-533
    • /
    • 2012
  • This paper presents an adaptive strategy of GENCOs for reducing the greenhouse gas by fuel mix change. Fuel mix stands for generation capacity portfolio composed of different fuel resources. Currently, the generation sector of power industry in Korea is heavily dependent on fossil fuels, therefore it is required to change the fuel mix gradually into more eco-friendly way based on renewable energies. The generation costs of renewable energies are still expensive compared to fossil fueled resources. This is why the adaptive change is more preferred at current stage and this paper proposes an optimal strategy for capacity planning based on multiple environmental scenarios on the time horizon. This study used the computer program tool named GATE-PRO (Generation And Transmission Expansion PROgram), which is a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. The simulations have been carried out with the priority allocation method in the program to determine the optimal mix of NRE(New Renewable Energy). Through this process, the result proposes an economic fuel mix under emission constraints compatible with the greenhouse gas mitigation policy of the United Nations.

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

The Mitigation Model Development for Minimizing IT Operational Risks (IT운영리스크 최소화를 위한 피해저감모델 구현에 관한 연구)

  • Lee, Young-Jai;Hwang, Myung-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.3
    • /
    • pp.95-113
    • /
    • 2007
  • To minimize IT operational risks and the opportunity cost for lost business hours. it is necessary to have preparedness in advance and mitigation activities for minimization of a loss due to the business discontinuity. There are few cases that banks have a policy on systematic management, system recovery and protection activities against system failure. and most developers and system administrators response based on their experience and the instinct. This article focuses on the mitigation model development for minimizing the incidents of disk unit in IT operational risks. The model will be represented by a network model which is composed of the three items as following: (1) the risk factors(causes, attributes and indicators) of IT operational risk. (2) a periodic time interval through an analysis of historical data. (3) an index or an operational regulations related to the examination of causes of an operational risk. This article will be helpful when enterprise needs to hierarchically analyze risk factors from various fields of IT(information security, information telecommunication, web application servers and so on) and develop a mitigation model. and it will also contribute to the reduction of operational risks on information systems.

  • PDF

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Retrofitting of a weaker building by coupling it to an adjacent stronger building using MR dampers

  • Abdeddaim, Mahdi;Ounis, Abdelhafid;Shrimali, Mahendra K.;Datta, Tushar K.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.197-208
    • /
    • 2017
  • Among various retrofitting strategies, use of semi-active control for retrofitting a building structure has gained momentum in recent years. One of the techniques for such retrofitting is to connect a weaker building to an adjacent stronger building by semi-active devices, so that performances of a weaker building are significantly improved for seismic forces. In this paper, a ten storey weaker building is connected to an adjacent stronger building using magneto-rheological (MR) dampers, for primarily improving the performance of the weaker building in terms of displacement, drift and base shear. For this, a fuzzy logic controller is specifically developed by fuzzyfying the responses of the coupled system. The performance of the control strategy is compared with the passive-on and passive-off controls. Pounding Mitigation between the two buildings is also investigated using all three control strategies. The results show that there exists a fundamental frequency ratio between the two buildings for which maximum control of the weaker building response takes place with no penalty on the stronger building. There exists also a fundamental frequency ratio where control of the weaker building response is achieved at the expense of the amplification of the stronger building. However, coupling strategy always improves the possibility of pounding mitigation.

Wind Load Mitigation for Transmission Tower using Viscoelastic Damper (점탄성감쇠기를 이용한 송전철탑 풍하중의 저감)

  • Min, Kyung-Won;Park, Ji-Hun;Moon, Byoung-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

Evaluation for Effectiveness of Radon Mitigation on Dwellings and Public Buildings in Korea (건축물 유형에 따른 라돈 저감 효과 평가)

  • Lee, DongHyun;Ryu, Seung-Hun;Jo, JungHeum;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.518-527
    • /
    • 2014
  • Objectives: The adverse health effects attributed to exposure to radon have been well known over the world. However, the efforts for prevention and mitigation of radon have not been taken in Korea so far. The purpose of this study was to evaluate the effectiveness of mitigation methods applied for various types of houses and public buildings with high level of radon. Methods: Based on the results of "National Radon Survey" performed by the National Institute of Environmental Research(NIER) in 2010-2012, we selected 30 candidate buildings consisting of 20 houses and 10 public buildings with greater than $148Bq/m^3$ of radon level. We measured the concentration of radon in 30 buildings, using E-PERMs and RAD-7 during January to March of 2013. More than five E-PERMs and one RAD-7 per house were installed for seven days. Ten houses and five public buildings were finally chosen to be mitigated after mainly considering the level of radon and the location of buildings nationwide. Three mitigation methods such as Sealing, two types of Active Ventilation(window-shaped and wall-typed ventilations), and Active Soil Depressurization(ASD) were applied, and the concentrations of radon were measured before and after mitigation, respectively. To evaluate the effectiveness of mitigation methods, reduction rates of radon were calculated and Wilcoxon's signed-rank test was performed. Results: The mean concentration of 15 buildings just before radon mitigation was $297.8Bq/m^3$, and most of the buildings were located in Gangwon, Chungbuk, Chungnam, and Daegu areas(73.3%), and built in 1959-1998. The level of radon decreased from 48% to 90% and kept the below recommendation limit of $148Bq/m^3$ after installation of radon mitigation. Among mitigation methods applied, the reduction rate(58.7-90.4%) of radon attributed to ASD was the greatest than that of other methods, followed by Active Ventilation(48.4-78.4%) and Sealing(<22%). The effectiveness of radon reduction by window-shaped Active Ventilation(63.2-75.2%) was relatively better than that of wall-typed Active Ventilation(48.4-54.3%). Conclusions: The results of this study indicate that ASD could be more effective for radon mitigation. Moreover, our findings would be background information in future for making the strategy for radon mitigation nationwide, as well as for developing Korean-version of mitigation techniques according to types of dwellings in Korea.

Effect of Top-Mounted ICI on Severe-Accident Mitigation (노내계측계통 상부탑재에 의한 중대사고 대처 영향)

  • Suh, Jungsoo;Kim, Han Gon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.209-215
    • /
    • 2015
  • The effects of the mounting location of ICI cables on severe accident mitigation systems, specially IVR-ERVC (In-Vessel Retention by External Reactor Vessel Cooling) and core catcher (Ex-vessel corium retention and cooling system), are investigated. The effects of bottom-mounted ICI strategy on severe accident mitigation are summarized and advantages of top-mounted ICI to improve severe accident mitigation are also highlighted.