• Title/Summary/Keyword: Mitigation strategies

Search Result 202, Processing Time 0.018 seconds

New Estimates of CH4 Emission Scaling Factors by Amount of Rice Straw Applied from Korea Paddy Fields (볏짚 시용에 따른 벼 재배 논에서의 메탄 배출계수 개발에 관한 연구)

  • Ju, Okjung;Won, Tae-Jin;Cho, Kwang-Rae;Choi, Byoung-Rourl;Seo, Jae-Sun;Park, In-Tae;Kim, Gun-Yeob
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • BACKGROUND: Accurate estimates of total direct $CH_4$ emissions from croplands on a country scale are important for global budgets of anthropogenic sources of $CH_4$ emissions and for the development of effective mitigation strategies. Methane production resulted by the anaerobic decomposition of organic compounds where $CO_2$ acts as inorganic electron acceptor. This process could be affected by the addition of rice straw, water management and rice variety itself. METHODS AND RESULTS: Rice (Oryza sativa L. Japonica type, var Samkwangbyeo) was cultivated in four plots: (1) Nitrogen-Phosphorus-Potassium (NPK) ($N-P_2O_5-K_2O$:90-45-57 kg/ha); (2) NPK plus 3 Mg/ha rice straw (RS3); (3) NPK plus 5 Mg/ha rice straw (RS5); (4) NPK plus 7 Mg/ha rice straw (RS7) for 3 years (2010-2012) and the rice straw incorporated in fall (Nov.) in Gyeonggi-do Hwaseong-si. Gas samples were collected using the closed static chamber which were installed in each treated plot of $152.9m^2$. According to application of 3, 5, 7 Mg/ha of rice straw, methane emission increased by 46, 101, 190%, respectively, compared to that of the NPK plot. CONCLUSION(S): We obtained a quantitative relationship between $CH_4$ emission and the amount of rice straw applied from rice fields which could be described by polynomial regression of order 2. The emission scaling factor estimated by the relationship were in the range of IPCC GPG (2000).

An Analytical Study on the Seismic Behavior and Safety of Vertical Hydrogen Storage Vessels Under the Earthquakes (지진 시 수직형 수소 저장용기의 거동 특성 분석 및 안전성에 관한 해석적 연구)

  • Sang-Moon Lee;Young-Jun Bae;Woo-Young Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.152-161
    • /
    • 2023
  • In general, large-capacity hydrogen storage vessels, typically in the form of vertical cylindrical vessels, are constructed using steel materials. These vessels are anchored to foundation slabs that are specially designed to suit the environmental conditions. This anchoring method involves pre-installed anchors on top of the concrete foundation slab. However, it's important to note that such a design can result in concentrated stresses at the anchoring points when external forces, such as seismic events, are at play. This may lead to potential structural damage due to anchor and concrete damage. For this reason, in this study, it selected an vertical hydrogen storage vessel based on site observations and created a 3D finite element model. Artificial seismic motions made following the procedures specified in ICC-ES AC 156, as well as domestic recorded earthquakes with a magnitude greater than 5.0, were applied to analyze the structural behavior and performance of the target structures. Conducting experiments on a structure built to actual scale would be ideal, but due to practical constraints, it proved challenging to execute. Therefore, it opted for an analytical approach to assess the safety of the target structure. Regarding the structural response characteristics, the acceleration induced by seismic motion was observed to amplify by approximately ten times compared to the input seismic motions. Additionally, there was a tendency for a decrease in amplification as the response acceleration was transmitted to the point where the centre of gravity is located. For the vulnerable components, specifically the sub-system (support columns and anchorages), the stress levels were found to satisfy the allowable stress criteria. However, the concrete's tensile strength exhibited only about a 5% margin of safety compared to the allowable stress. This indicates the need for mitigation strategies in addressing these concerns. Based on the research findings presented in this paper, it is anticipated that predictable load information for the design of storage vessels required for future shaking table tests will be provided.