• 제목/요약/키워드: Mist Spray

검색결과 85건 처리시간 0.03초

초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구 (The Experimental Study on Mist Cooling Heat Transfer)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

미분무 액적특성이 살수밀도에 미치는 영향 연구 (A Study on the Effects of Droplets Characteristics of Water Mist on the Spray Density on the Floor)

  • 김종훈;박원희;김운형;명상엽
    • 한국재난정보학회 논문집
    • /
    • 제17권1호
    • /
    • pp.120-127
    • /
    • 2021
  • 연구목적: 본 연구는 미분무 소화설비의 FDS모델링 수행에 있어 액적과 관련된 변수의 설정 변화가 살수밀도에 미치는 영향을 알아보았다. 연구방법: 미분무 노즐의 살수 현상을 FDS에서 해석할 경우 액적과 관련하여 설정할 수 있는 항목 중 초당액적수, 액적속도, 입경분포함수, 분사패턴형태의 값을 입력하여 분석된 결과를 검토하였다 연구결과: 분석결과에서, 초당미립자 수 설정은 일정 값 이상이 되면 유사한 바닥면의 살수밀도를 보여주었다. 액적속도는 낮아짐에 따라 중심부분의 살수밀도를 높이지만 0.15m 이상 떨어진 거리에서는 낮아짐을 알 수 있었다. 입경분포함수의 변화에 대한 분석에서, 𝛾값의 증가는 중심부분의 살수밀도의 증가를 가져오지만, 떨어진 위치에서의 값은 감소를 가져온다는 점을 알 수 있었다. 가우시안 분포를 적용한 결과에 비하여 균등분포를 적용하는 경우 중앙값은 극적으로 낮아지지만 인접위치에서의 값은 증가함을 보여준다. 결론: FDS의 액적특성에 관련된 변수들은 각각 바닥면의 살수밀도에 영향을 준다. 그러므로 화재 진압이나 냉각 등의 해석에 들어가기 전 신뢰성을 확보하기 위하여 입력변수에 대한 면밀한 검토가 필요하다.

압축냉각공기와 오일미스트를 이용한 환경친화 연삭가공기술 (Ecological Grinding Technology Using Compressed Cold Air and Oil Mist)

  • 이석우;최헌종;허남환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.24-27
    • /
    • 2002
  • The environmental problems by using coolant demanded the new cooling methods. As one of them, the studies on the finding with compressed cold air and oil mist have been done. The cooling method using compressed cold air was effective through going down the temperature of compressed air supplied below $-25^{\circ}$ and increasing the amount of compressed cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using oil mist newly were suggested. This method can satisfy both cooling effect and lubrication with only small amount of coolant, also have the benefit in the point of decreasing the environmental pollution. This paper focused on analyzing the grinding characteristics of the cooling method using oil mist. The grinding test according to compressed cold air, oil mist spray pressure and oil mist supply direction were done.

  • PDF

불활성 압축가스를 이용한 미세물분무 소화시스템의 유류화재 소화특성 (Extinguishing of Oil Fire by Water Mist Suppression System Using Compressed Inert Gas)

  • 신창섭;전고운;김기환
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.109-114
    • /
    • 2010
  • Water mist fire suppression system is environmental system and needs a flange pump to jet water. In this research, high pressure Nitrogen cylinder is used as a pressurizing source instead of flange pump, and also we tried to find the possibility of using compressed Nitrogen as a fire suppression agent. As a result, it was possible to design water mist fire suppression system with Nitrogen cylinder and suppress oil fire effectively. With DK1.58 nozzle, the optimum Nitrogen pressure was 80bar and the pressure was stable during water mist spray. However, jet of Nitrogen was not effective fire suppression agent when it was dually used with water mist because water mist has blown away, and it is efficient way to use compressed Nitrogen as a pressurizing source only.

워터미스트 작동에 의한 산소저공급 실내화재 특성 변화에 대한 수치해석 연구 (Numerical Study on the Change in Fire Characteristic as Operating Water-mist in Under-ventilated Compartments)

  • 고권현;이성혁;유홍선
    • 한국분무공학회지
    • /
    • 제13권3호
    • /
    • pp.156-161
    • /
    • 2008
  • The present article reports a numerical study on the fire characteristic change by water-mist in under-ventilated compartments. The natural gas and heptane pool fires are used as fire sources, which are located in the bottom center of the 2/5 reduced-scaled model of the ISO 9705 standard room. The fire modeling using the FDS (Fire Dynamics Simulator) is validated by comparison with previously published experimental results. For temperature and combustion gas concentrations at two positions located in the upper layer of compartment, the predicted results with and without water-mist are compared each other. The results show that under the water-mist operation, the predicted temperature and carbon monoxide concentration reduce as $300{\sim}400^{\circ}C$ and about 20%, respectively, compared to those without water-mist.

  • PDF

미분무 시스템이 장착된 화염방지장치의 화재 진화 특성에 관한 연구 (A Study on the Fire Suppression Characteristics of a Flame Arrester with Water Mist System)

  • 김해지;이경로
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.117-124
    • /
    • 2016
  • In this paper, we developed a breather valve with a water mist system for use near an oil storage tank. Our process applied a water mist system to the flame arrester to evaluate the fire suppression characteristics. For the fire suppression evaluation of the water mist system, we evaluated the angle of the nozzle, fire suppression, spray particle size, flashback, fire suppression time, and fire suppression test of antifreeze. Through the fire suppression test, the best fire suppression nozzle used an angle of $140^{\circ}$, and the flashback phenomenon of flame arrester did not occur. The fire suppression time of water mist system time was within three seconds, and the antifreeze was no problem with the fire suppression.

이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션 (Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles)

  • 배강열;정희택;김형범;정인수;김창
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF

소화 노즐의 분무 특성 예측을 위한 CFD 기법의 적용 (Application of CFD Technique to Performance Prediction of Spray Characteristics of Fire Suppression Nozzles)

  • 정희택;이창효;정향남;최병일;한용식;옥영욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.233-239
    • /
    • 2005
  • In the present study, numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied in both the internal and external flow region of the spray nozzles. Applications were done to the full cone nozzle for the operation range of the low pressure and high flow-rate. Numerical validation was proved by the comparison of the experimental data. Parametric study of the key design factors was tried to improve the performance.

  • PDF

미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석 (Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber)

  • 수먼;이상욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

물분무를 이용한 화재제어에 관한 실험적 연구 (An Experimental Study of Fire Suppression Using a Water Mist in a Compartment)

  • 김성찬;박현태;유홍선
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.367-373
    • /
    • 2003
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. The fire extinguishing times are measured for various fire sources, fuel types, and different total flooding rates of water mist. Pool fire with hydrocabon fuel is successfully extinguished within a minute under the operating conditions of the water mist system. Two different regimes of the smoke layer cooling are observed, such as rapid and slow cooling processes. The regimes are divided by threshold time which is calculated with auto-correlation function. The threshold time for the initial cooling decreases with increasing water flow-rates and fire sources. These initial cooling effects play an important role in preventing the occurance of flashover fire by the initial fire suppression.