• 제목/요약/키워드: Mississippi River Basin

검색결과 3건 처리시간 0.023초

Conservation potential of North American large rivers: the Wabash River compared with the Ohio and Illinois rivers

  • Pyron, Mark;Muenich, Rebecca Logsdon;Casper, Andrew F.
    • Fisheries and Aquatic Sciences
    • /
    • 제23권6호
    • /
    • pp.15.1-15.14
    • /
    • 2020
  • Background: Large rivers are ecological treasures with high human value, but most have experienced decades of degradation from industrial and municipal sewage, row-crop agricultural practices, and hydrologic alteration. We reviewed published analyses of long-term fish diversity publications from three intensively managed large river ecosystems to demonstrate the conservation potential of large river ecosystems. Results: We show how the incorporation of recent advances in river concepts will allow a better understanding of river ecosystem functioning and conservation. Lastly, we focus on the Wabash River ecosystem based on high conservation value and provide a list of actions to maintain and support the ecosystem. In the Wabash River, there were originally 66 species of freshwater mussels, but now only 30 species with reproducing populations remain. Although there were multiple stressors over the last century, the largest change in Wabash River fish biodiversity was associated with rapid increases in municipal nutrient loading and invasive bigheaded carps. Conclusions: Like similarly neglected large river systems worldwide, the Wabash River has a surprising amount of ecological resilience and recovery. For instance, of the 151 native fish species found in the 1800s, only three species have experienced local extinctions, making the modern assemblage more intact than many comparable rivers in the Mississippi River basin. However, not all the changes are positive or support the idea of recovery. Primary production underpins the productivity of these ecosystems, and the Wabash River phytoplankton assemblages shifted from high-quality green algae in the 1970s to lower less nutritional blue-green algae as nutrient and invasive species have recently increased. Our recommendations for the Wabash River and other altered rivers include the restoration of natural hydrology for the mainstem and tributaries, nutrient reductions, mechanisms to restore historical hydrologic patterns, additional sediment controls, and improved local hydraulics.

멕시코만 코어 퇴적물(ODP 625B)의 식물왁스 탄화수소(n-alkanes)와 지방산(n-alkanoic acids)의 생성기원 비교 연구 (Contrasting Sources of Plant Wax n-alkanes and n-alkanoic Acids in Gulf of Mexico Sediments (ODP 625B))

  • 서연지
    • Ocean and Polar Research
    • /
    • 제41권2호
    • /
    • pp.89-97
    • /
    • 2019
  • Long chain plant waxes (n-alkanes, n-alkanoic acids, and n-alcohols) and their carbon isotopic compositions (${\delta}^{13}C$) in geologic archives are valuable tools for paleovegetation reconstruction. However, the sensitivity of different plant wax constituents to vegetation shift is not well understood. This study explores controls on the variation in ${\delta}^{13}C$ values of long-chain n-alkanes ($C_{27}$ to $C_{33}$) and n-alkanoic acids ($C_{26}-C_{30}$) in the Gulf of Mexico core sediments (ODP 625B) near the Mississippi River delta. n-Alkanoic acids' ${\delta}^{13}C$ values were higher than those of n-alkanes by 1-2‰ on average and such a pattern is the opposite from their isotope fractionation observed in living plants: 1-2‰ smaller in n-alkanes than n-alkanoic acids. We attribute this offset to contributions from aquatic plants or microbes that produce high concentrations of $^{13}C-enriched$ long-chain n-alkanoic acids. The sensitivity of n-alkanes and n-alkanoic acids to vegetation and climate varied among chain lengths. The $n-C_{33}$ alkanes were most sensitive to $C_4$ grassland expansion among n-alkane homologues, while no specific trend was observed in n-alkanoic acids. This is due to the similarity in n-alkanoic acid concentrations between $C_3$ and $C_4$ plants by homologues and low terrestrial plant-derived n-alkanoic acid contributions to the sediments. The results of this study suggest that long chain n-alkanoic acids' ${\delta}^{13}C$ values in sediments may be influenced by contributions from different sources such as aquatic plants or microbial inputs and therefore interpretations regarding this matter should be cautiously formulated. We suggest that there is a need for further studies on characterizing long-chain n-alkanoic acids ($C_{26}-C_{34}$) in aquatic plants and microbes from various climates and environments in order to investigate their production and integration into sedimentary archives.