• Title/Summary/Keyword: Mission Reliability

Search Result 222, Processing Time 0.023 seconds

Lessons and Countermeasures Learned from Both Domestic and Foreign CubeSat Missions (국내외 큐브위성 운용 사례로 살펴본 교훈과 대책 )

  • In-Hoi Koo;Myung-Kyu Lee;Seul-Hyun Park
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.355-372
    • /
    • 2023
  • As the need for low-cost, high-efficiency cubesats develops in the new space age, commercial paradigms are shifting in the private sector. This paper examines the challenges of launching and operating both domestic and foreign cubesats, and proposes practical solutions to ensure the robustness and reliability of the satellites from a practical perspective. In particular, the paper deals with checkpoints that are easy to miss, focusing on key events that can occur from the satellite deployment process through normal mode to mission mode in the operation scenario. Although the contents presented in this paper may not be technically applicable to all cubesat systems due to the different nature of each satellite bus system, they will be of some help during satellite assembly, integration and testing.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.

Model-Based Design and Enhancement of Operational Procedure for Guided Missile Flight Test System (유도무기 비행시험 시스템을 위한 모델 기반 운용절차의 설계 및 개선)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.479-488
    • /
    • 2019
  • The flight test operational procedure artifact includes mission planning, execution methods, and safety measures for each step of test progress. As the development of guided missiles has become more advanced and strategic, flight test has become increasingly complex and broadened. Therefore, increased reliability of the flight test operation procedures was required to ensure test safety. Particularly, the design of the flight test operational procedures required verification through M&S to predict and prepare for the uncertainty in a new test. The relevant studies have published the optimal framework development for flight tests and the model-based improvements of flight test processes, but they lacked the specificity to be applied directly to the flight test operational procedures. In addition, the flight test operational procedures, which consist of document bases, have caused problems such as limitations of analysis capabilities, insensitive expressions, and lack of scalability for the behavior and performance analysis of test resources. To improve these problems, this paper proposes how to design operational procedure of guided missile flight test system by applying MBSE(Model-based Systems Engineering). This research has improved reliability by increasing the ability to analyze the behavior and performance of test resources, and increased efficiency with the scalability applicable to multiple flight tests. That can be also used continuously for the guided missile flight tests that will be developed in the future.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.

A Study of Frangibility of 9MM Bullet Related to Material Composition and Sinter Condition (합금 조성 및 소결 조건에 따른 9MM 탄자의 파쇄성에 관한 연구)

  • Kim, Bo-Ram;Seo, Jung-Hwa;Jung, Hee-Chur;Kim, Kyu-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.615-622
    • /
    • 2020
  • Frangible bullets, which are shredded after impact on a target, reduce the possibility of both ricochet and unexpected injury in shooting training and in mission acts in dams, nuclear power plants, and cultural properties. Reducing the levels of hazardous materials in shooting ranges, such as lead, has become an important agenda for the government and environmental groups. In this study, the shape of a frangible bullet was designed for efficient shredding, and the safety and reliability were confirmed by actual firing under different process conditions. In addition, the physical characteristics, such as compaction pressure, density, and frangibility of each process, were compared by analyzing the microstructure of the sintered frangible bullet. The experiment revealed the smallest fragmentation after impact on the target under the following conditions: Cu-Sn 85:15; sintering temperature, 600℃; sintering time, one hour. Further development of the process conditions and experimental methods will contribute to the performance and environmental improvement of a frangible bullet.

A Study on the Design Improvement to prevent the stoppage phenomenon of Launch Support Device for Self-Propelled Artillery (자주포용 발사지지대의 멈춤현상 방지를 위한 설계개선 연구)

  • Kim, Sung Hoon;Park, Young Min;Noh, Sang Wan;Park, Dae Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.443-450
    • /
    • 2020
  • This paper reports a design improvement study to solve the stoppage phenomenon caused by the launch-support device applied to K105A1. The K105A1 is a weapon system equipped with an old 105 mm towed howitzer in a wheeled vehicle, which provides superior maneuverability compared to track equipment. The launch support device serves to withstand fire impact and load. In this way, this device is fixed firmly to the ground in preparation for the shooting mission and is responsible for the critical performance, such as fixing the position of the vehicle. On the other hand, during the field test, a temporary stoppage of the launch support occurred, which caused a problem of not being fixed to the ground. To solve this problem, the cause of failure was analyzed by a replay test and parts inspection. In addition, the operating concept, method, and design were analyzed to derive the cause and solve the problem by changing the parts design. Finally, the performance and firing missions were performed normally by applying the changed design to K105A1. The performance stability and reliability of the launch support device were confirmed, which are expected to be of great assistance in the development of military equipment in the future.

Effect of Perceived Value on Memories, Attitudes, and Loyalty: Social Enterprise Products (사회적기업 제품의 지각된 가치가 기억, 태도, 그리고 충성도에 미치는 영향)

  • Park, Sang-Keum;Lee, Yong-Ki;Yoo, Dongkuen
    • Journal of Distribution Science
    • /
    • v.13 no.12
    • /
    • pp.73-84
    • /
    • 2015
  • Purpose - Various social issues have arisen since the beginning of the 21st century therefore, enterprises that disregarded social issues have become unsustainable, and social enterprises have appeared to address these issues. A social enterprise is a social mission-focused organization that uses a market-based strategy and has a vulnerable business structure. To be self-sustainable, a social enterprise should make consumers aware of the value that it provides and secure its profitability through consumer consumption. From this perspective, this study investigates the relationship between perceived value (utilitarian and hedonic) and loyalty, and examines how memory and attitudes play mediating roles between perceived value and loyalty. For these purposes, the author developed a structural model consisting of several variables. In this model, perceived value, which was utilitarian and hedonic, was proposed to affect the memory and attitudes toward social enterprise products, thus increasing loyalty. Therefore, memory and attitudes were proposed as core mediating variables between perceived value and loyalty. Research design, data, and methodology - To analyze the proposed model, data were collected from 582 respondents and analyzed using SPSS 21.0 and AMOS 21.0. To test unidimensionality and the nomological validity of the measures of each construct, we employed a scale refinement procedure. The results of the reliability test with Cronbach's α and confirmatory factor analysis warranted the unidimensionality of the measures for each construct. In addition, the nomological validity of the measures was warranted from the results of the correlation analysis. The result of the overall model analysis demonstrated a good fit (χ2=529.881, df=144, χ2/df=3.680, p-value=0.000, GFI=0.905, NFI=0.948, CFI=0.961, RMR=0.036, RMSEA=0.068). Results - The findings are summarized as follows. First, the hedonic and utilitarian value of social enterprise products had positive effects on memory and attitudes. Second, the hedonic value of social enterprise products more strongly affects memory and attitudes than utilitarian value. Third, memory and attitudes had positive effects on loyalty. Lastly, memory had a stronger effect on loyalty than attitudes. Conclusions - The purchase rate of social enterprises' products increases only if the products are included in the "information search" and "alternative evaluation" processes in consumers' purchase decision-making processes. Therefore, a social enterprise must actively promote the fact that it pursues a social value, and shares both the hedonic and utilitarian values of its products. Accordingly, because hedonic value has a more significant impact on a company and attitudes, a social enterprise should develop hedonic values for product consumption, thereby leading consumers who care about value consumption to purchase its products. Moreover, a social enterprise must maintain good memories and attitudes for consumers because memory does not change over time, although attitude does. The limitations of this study and suggestions for future research are as follows. This study viewed "consumer loyalty" as the success factor of social enterprises, thereby considers an "increase in sales" as the success factor. Therefore, in future studies, diverse factors, including social contribution and word-of-mouth intention, should be regarded. In addition, future studies need to thoroughly review and make assurances about the relationship between memory and attitude.

A Linkage Based Space Debris Capture Device Utilizing Kevlar Wires (Kevlar wire를 이용한 링크 구동형 우주잔해 포획장치)

  • Jung, Jinwon;Hwang, Bohyun;Kim, Heekyung;Lee, Gunhee;Seo, Minseok;Lee, Dongyun;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.36-41
    • /
    • 2017
  • As the space debris in the satellite orbit increases, the risk of collision between the currently operating satellites and the space debris is continuously increasing. Therefore, in this study, we designed one-degree-of-freedom capture device using simple deployment mechanism. The capture device consists of four link groups connected with net. To increase the reliability, each link group is connected to one driving part so that the total degree of freedom is 1. In addition, the links were stowed on each side of the satellites so that they would not affect the janitor satellite mission. Finally, to confirm the possibility of deployment in the space environment, we carried out deployment experiments in water similar to the microgravity environment, and confirmed the deployment of capture device and the possibility of capturing target satellite.

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission (우주과학임무를 위한 큐브위성 자기장 청결도 분석)

  • Jo, Hye Jeong;Jin, Ho;Park, Hyeonhu;Kim, Khan-Hyuk;Jang, Yunho;Jo, Woohyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.