• 제목/요약/키워드: Mission Operations

검색결과 206건 처리시간 0.024초

통합지향형 임무운용시스템 분석 및 설계 (Analysis and Design of the Generic Mission Operations System)

  • 정옥철;김해동;최수진;정대원
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.127-132
    • /
    • 2009
  • 본 논문에서는 단일 임무운용 개념에서 벗어나 향후 다수의 위성들을 동시에 직접 제어 하거나, 임무가 상이하더라도 주요 핵심시스템을 근간으로 각 위성마다 소요되는 임무운용 시스템을 개발함에 있어 개발기간을 획기적으로 줄일 수 있는 차세대 통합형 임무운용시스템 개발을 위한 분석 및 설계결과를 기술하였다. 이를 위해 우주개발선진국들의 통합지향형 임무운용시스템 개발 추세 및 개발 동향을 살펴보고, 각 시스템들의 주요 기능을 수행하는 공통 핵심시스템의 구조도 분석하였으며 설계 결과를 제시하였다.

  • PDF

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • 제25권5호
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

Satellite Ground Track Display on a Digitized World Map for the KOMPSAT-2 Mission Operations

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.246-249
    • /
    • 2005
  • Satellite ground track display computer program is designed and implemented for the KOMPSAT-2 mission operations. Digitized world map and detailed Korean map is realized with zoom and pan capability. The program supports real-time ground trace and off-line satellite image planning on the world map. Satellite mission timeline is also displayed with the satellite ground track for the visualized mission operations. In this paper, the satellite ground track display is described in the aspect of the functional requirements, design, and implementation.

  • PDF

정상 임무운용 상태에서 다목적실용위성 2호 탑재체에 대한 태양 입사각 분석 (SUN INCIDENCE ANGLE ANALYSIS OF KOMPSTAT-2 PAYLOAD DURING NORMAL MISSION OPERATIONS)

  • 김응현;용기력;이상률
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.309-316
    • /
    • 2000
  • KOMPSAT-2 will carry MSC(Multi-Spectral Camera) which provides 1m resolution panchromatic and 4m resolution multi-spectral images at the altitude of 685km sun-synchronous mission orbit. The mission operation of KOMSPAT-2 is to provide the earth observation using MSC with nadir pointing. KOMPSAT-2 will also have the capability of roll/pitch tilt maneuver using reaction wheel of satellite as required. In order to protect MSC from thermal distortion as well as direct sunlight, MSC shall be operated within the constraint of sun incidence angle. It is expected that the sunlight will not violate the constraint of sun incidence angle for normal mission operations without roll/pitch maneuver. However, during roll/pitch tilt operations, optical module of MSC may be damaged by the sunlight. This study analyzed sun incidence angle of payload using KOMPSAT-2 AOCS (Attitude and Orbit Control Subsystem) Design and Performance Analysis Soft ware for KOMPSAT-2 normal mission operations.

  • PDF

해상보급감정의 임무효과모형 (Mission Effectiveness Model for Replenishment Ships)

  • 신현주;하석태
    • 한국국방경영분석학회지
    • /
    • 제22권1호
    • /
    • pp.97-113
    • /
    • 1996
  • Mission effectiveness may be defined as a probability that a system can successfully meet an intended mission demand within a given time when operated under specified conditions. This study deals with the Mission effectiveness of a replenishment ships that is performing several types of missions. The essential attributes and their related factors affecting the replenishment missions are established, and then, a mathematical mission effectiveness model is constructed with a replenishment mission characteristics for a basis. Mission effectiveness for a mission is determined by finding the joint probability measure of the following three attributes : operational readiness of the replenishment ships at the start of a mission ; mission reliability of the replenishment ships ; capability of successfully accomplishing intended objectives given an environmental condition. The model is solved analytically. Operational readiness of the replenishment ships in found by the assumed data. Mission reliability and capability are calculated based on the assumed probability distributions. The model would be a useful tool to evaluate mission effectiveness as it is very a replenishment ships.

  • PDF

베이지안기법에 의한 임무 신뢰도 예측 (Mission Reliability Prediction Using Bayesian Approach)

  • 전치혁;양희중;정의승
    • 한국경영과학회지
    • /
    • 제18권1호
    • /
    • pp.71-78
    • /
    • 1993
  • A Baysian approach is proposed is estimating the mission failure rates by criticalities. A mission failure which occurs according to a Poisson process with unknown rate is assumed to be classified as one of the criticality levels with an unknown probability. We employ the Gamma prior for the mission failure rate and the Dirichlet prior for the criticality probabilities. Posterior distributions of the mission rates by criticalities and predictive distributions of the time to failure are derived.

  • PDF

DESIGN AND IMPLEMENTATION OF THE MISSION PLANNING FUNCTIONS FOR THE KOMPSAT-2 MISSION CONTROL ELEMENT

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권3호
    • /
    • pp.227-238
    • /
    • 2003
  • Spacecraft mission planning functions including event prediction, mission scheduling, command planning, and ground track display have been developed for the KOMPSAT-2 mission operations. Integrated event prediction functions including satellite orbital events, user requested imaging events, and satellite operational events have been implemented. Mission scheduling functions have been realized to detect the mission conflicts considering the user specified constraints and resources, A conflict free mission scheduling result is mapped into the spacecraft command sequences in the command planning functions. The command sequences are directly linked to the spacecraft operations using eXtensible Markup Language(XML) for command transmission. Ground track display shows the satellite ground trace and mission activities on a digitized world map with zoom capability.

Airfleet의 임무효과

  • 김영휘;하석태
    • 한국국방경영분석학회지
    • /
    • 제15권1호
    • /
    • pp.14-27
    • /
    • 1989
  • This paper deals with the mission effectiveness of an airfleet, Airfleet operating system consists of a finite number of units performing the several mission types. Earlier works for the mission effectiveness of a fleet is limited to only one mission type and computer simulation approaches. The mission effectiveness. model of a fleet is constructed by three attributes - the mission readiness of the units, the mission reliability and capability of units. The environmental conditions and human factors affecting the mission success are considered together. The solution of the model is obtained by analytical technique. Especially, AOS is considered a closed queueing network with a finite number of units and a single job class. And then, the mission readiness of the units is found by the mean value analysis. The model would be a useful tool to readily evaluate mission effectiveness of a airfleet as it is and provide a criterion for determining the optimal operating policy.

  • PDF

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.46-46
    • /
    • 2003
  • Since its launching on 21 December 1999, the KOrea Multi-Purpose SATellite-Ⅰ (KOMPSAT-Ⅰ) has been successfully operated by the Mission Control Element (MCE), which was developed by the Electronics and Telecommunications Research Institute (ETRI). Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. The Mission Analysis and Planning Subsystem (MAPS), which is one of the four subsystems in the MCE, played a key role in the Launch and Early Orbit Phase (LEOP) operations as well as the on-orbit mission operations. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations. We also present the orbital evolutions during the three years of the mission life of the KOMPSAT-Ⅰ.

  • PDF

Preparation of Contingency Trajectory Operation for the Korea Pathfinder Lunar Orbiter

  • Jun Bang;SeungBum Hong;Jonghee Bae;Young-Joo Song;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권4호
    • /
    • pp.217-224
    • /
    • 2023
  • The Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, successfully entered its mission orbit on December 27, 2022 (UTC), and is currently performing its mission smoothly. To mitigate potential contingencies during the flight and to navigate the spacecraft into the desired lunar orbit, the KPLO flight dynamics (FD) team analyzed major trajectory-related contingencies that could lead to the violation of mission requirements and prepared operational procedures from the perspective of trajectory and FD. This paper presents the process of preparing contingency trajectory operations for the KPLO, including the identification of trajectory contingencies, prioritization results, and the development of recovery plans and operational procedures. The prepared plans were successfully applied to address minor contingencies encountered during actual operations. The results of this study will provide valuable insights to FD engineers preparing for space exploration mission operations.