• Title/Summary/Keyword: Mission Design

Search Result 805, Processing Time 0.036 seconds

The Development of Performance Analysis Code for Conceptual Design of Jet Fighters (전투기의 개념설계를 위한 성능해석 프로그램 개발)

  • Kim, Taewoo;Choi, Hyunmin;Choi, Byungryul;Lee, Sungjin;Nam, Hwajin;Choi, Donghoon;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.404-414
    • /
    • 2013
  • In the conceptual design phase of jet fighters, the trade study is performed repeatedly for a selection of the baseline configuration. The automation of repeated trade study makes possible to select efficiently the baseline configuration. In this study, the performance analysis code was developed for the automation of trade study. The code was consists of the module of shape generation, the module of weight estimation, the module of mission performance analysis. 3D CAD Model can be generated by the module of shape generation and Weight can be estimated by using the empirical equation in the module of weight estimation. The module of mission performance analysis was able to calculate the mission performance about the arbitrary mission profile. In addition, the optimal mission performance can be calculated by using optimization method. By performing the validation, the code was confirmed to be able to apply to the conceptual design phase.

GOES-9 GVAR Imager Processing System Development by KARI

  • Ahn, S.I.;Koo, I.H.;Yang, H.M.;Hyun, D.H.;Park, D.J.;Kang, C.H.;Kim, D.S.;Choi, H.J.;Paik, H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.31-33
    • /
    • 2003
  • Recently, KARI developed in-house meteorological sensor processing system named MESIS for GOES GVAR 5-CH Imager for better KOMPSAT EOC mission operation. MESIS consists of antenna system, receiver, serial telemetry card, processing and mapping software, and 2 NT PC systems. This paper shows system requirement, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of operations covering from RF signal reception to web publishing.

  • PDF

User Interface for Unmanned Combat Vehicle Based on Mission Planning and Global Path Planning (임무계획 및 전역경로계획에 기반한 무인전투차량의 운용자 인터페이스 구현)

  • Lee, Ho-Joo;Lee, Young-Il;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.689-696
    • /
    • 2009
  • In this paper, a new user interface for unmanned combat vehicle(UCV) is developed based on the mission planning and global path planning. In order to complete a tactical mission given to an UCV, it is essential to design an effective interface scheme between human and UCV considering changing combat environment and characteristics of the mission. The user interface is mainly composed of two parts, mission planning and global path planning, since they are important factors to accomplish combat missions. First of all, mission types of UCV are identified. Based on mission types, the concept of mission planning for UCVs is presented. Then a new method for global path planning is devised. It is capable of dealing with multiple grid maps to consider various combat factors so that paths suitable for the mission be generated. By combining these two, a user interface method is suggested. It is partially implemented in the Dog-horse Robot of ADD and its effectiveness is verified.

A Study on the Mission Reliability of Combat System through the Design Structure Matrix and Interface Matrix (설계구조행렬(DSM) 및 인터페이스 매트릭스 설계를 통한 전투체계 임무신뢰도에 관한연구)

  • Lee, Jeong-Wan;Park, Chan-Hyeon;Kim, So-Jung;Kim, Eui-Whan;Jang, Joong Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.451-458
    • /
    • 2019
  • Reliability in the course of weapons system development and operation is a key measure of the ability of a system to perform the required functions under specified conditions over a specified period of time, and the mission confidence for the assessment of mission fulfillment is an important indicator of victory or defeat in a battle. Mission reliability indicates the probability that a given task will succeed or fail in an event or environmental situation over a given period of time. The existing mission reliability was calculated after creating a confidence blow map with only physical connections based on the mission. However, as modern weapons systems evolve and advance, the related equipment structure becomes increasingly complex, making it impossible to express mission relevance when mission classification is required based on functional or physical connections. In this study, the mission reliability was calculated for a gun control system, which is part of a ship's combat system, by expressing the association between the physical and functional structures using the design structure matrix technique and the interface matrix technique. We expect the study results to be used as verification data for mission reliability.

Structural Design and Analysis of Pico-class Satellite named STEP Cube Lab

  • Jeon, Su-Hyeon;Jang, Su-Eun;Jung, Hyun-Mo;Cha, Jin-Yeong;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.34-43
    • /
    • 2014
  • The STEP Cube Lab (Cube Laboratory for Space Technology Experimental Projects) is a 1U cube satellite developed by the Space Technology Synthesis Laboratory of Chosun University to be launched in 2015. Its mission objective is twofold: to determine which of the fundamental space technologies researched at domestic universities, will be potential candidates for use in future space missions and to verify the effectiveness of the technologies by investigating mission data obtained from on-orbit operation of the cube satellite. In this paper, a structural design concept based on the 1U standard to achieve the mission objective is introduced. The validity of the design has been demonstrated by quasi-static analysis and modal analysis. In addition, a non-explosive separation device triggered by burn wire heating, which is one of the main mission payloads is introduced.

Mission Design for a Lunar Orbiter Launched by KSLV-II (한국형발사체를 사용한 달궤도선의 임무 설계)

  • Song, Eun-Jung;Park, Chang-Su;Cho, Sang-Bum;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.108-116
    • /
    • 2009
  • This paper considers the trajectory design problem for a lunar orbiter when launched by KSLV-II. KSLV-II puts its kick motor stage and lunar orbiter into a low earth orbit, and then the kick motor stage performed the translunar injection. To simulate more realistic situations, TLI (Trans-Lunar Injection) and LOI (Lunar Orbit Injection) maneuvers are modeled as finite burns. The feasibility of the lunar mission by KSLV-II are confirmed by the numerical results that show the reasonable required-velocity and propellant usage.

  • PDF

OPTIMAL TRAJECTORY DESIGN FOR HUMAN OUTER PLANET EXPLORATION

  • Park Sang-Young;Seywald Hans;Krizan Shawn A.;Stillwagen Frederic H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.285-289
    • /
    • 2004
  • An optimal interplanetary trajectory is presented for Human Outer Planet Exploration (HOPE) by using an advanced magnetoplasma spacecraft. A detailed optimization approach is formulated to utilize Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine with capabilities of variable specific impulse, variable engine efficiency, and engine on-off control. To design a round-trip trajectory for the mission, the characteristics of the spacecraft and its trajectories are analyzed. It is mainly illustrated that 30 MW powered spacecraft can make the mission possible in five-year round trip constraint around year 2045. The trajectories obtained in this study can be used for formulating an overall concept for the mission.

  • PDF

A Mission Planning System for Multiple Ballistic Missiles

  • Kim, Jingyu;Song, Chikwon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.815-821
    • /
    • 2019
  • This paper presents the design and implementation of a Mission Planning System(MPS) for multiple ballistic missiles. MPSs are also a kind of M&S systems in defense domain, and these provide important computations on the ground before flights of flying objects. The proposed MPS in this paper has a new concept which is far from generating a set of waypoints of a flying object and proving the set. In this paper, we firstly discuss the research motivation of our own MPS; then, we introduce the design of our MPS and its functionalities. In order to prove the practicality of our MPS, we have conducted a case study.

SUN INCIDENCE ANGLE ANALYSIS OF KOMPSTAT-2 PAYLOAD DURING NORMAL MISSION OPERATIONS (정상 임무운용 상태에서 다목적실용위성 2호 탑재체에 대한 태양 입사각 분석)

  • 김응현;용기력;이상률
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.309-316
    • /
    • 2000
  • KOMPSAT-2 will carry MSC(Multi-Spectral Camera) which provides 1m resolution panchromatic and 4m resolution multi-spectral images at the altitude of 685km sun-synchronous mission orbit. The mission operation of KOMSPAT-2 is to provide the earth observation using MSC with nadir pointing. KOMPSAT-2 will also have the capability of roll/pitch tilt maneuver using reaction wheel of satellite as required. In order to protect MSC from thermal distortion as well as direct sunlight, MSC shall be operated within the constraint of sun incidence angle. It is expected that the sunlight will not violate the constraint of sun incidence angle for normal mission operations without roll/pitch maneuver. However, during roll/pitch tilt operations, optical module of MSC may be damaged by the sunlight. This study analyzed sun incidence angle of payload using KOMPSAT-2 AOCS (Attitude and Orbit Control Subsystem) Design and Performance Analysis Soft ware for KOMPSAT-2 normal mission operations.

  • PDF

Design of SAR Satellite Constellation Configuration for ISR Mission (ISR 임무를 위한 SAR 위성의 군집궤도 배치형상 설계)

  • Kim, Hongrae;Song, Sua;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • For the Earth observation satellite for ISR mission, a satellite constellation can be utilized to observe a specific area periodically and ultimately increase the effectiveness of the mission. The Walker-Delta method was applied to design constellation orbits with four satellites, which could detect abnormal activities in AoI(Area of Interest). To evaluate the effectiveness of the mission, a revisiting time was selected as a key requirement. This paper presents the mission analysis process for four SAR satellites constellation as well as the result of constellation configuration design to meet the requirements. Figure of Merits analysis was performed based on algorithm developed. Finally, it was confirmed that the constellation orbit with four different orbital planes is likely to be appropriate for ISR mission.