• Title/Summary/Keyword: Mission Critical System

Search Result 120, Processing Time 0.025 seconds

Safety Design and Validation of Mission Equipment Package for Korean Utility Helicopter (KUH 임무탑재시스템의 안전성설계 및 검증)

  • Kim, Yoo-Kyung;Kim, Myung-Chin;Kim, Tae-Hyun;Yim, Jong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.813-822
    • /
    • 2010
  • Integrated data processing for display of flight critical data and mission critical data was conducted without additional display instruments using glass cockpit design. Based on a pre-designed flight critical system and a mission critical system, this paper shows an optimal design of subsystem integration. The design satisfies safety requirements of flight control systems(FCS) and requires minimized modification of pre-designed systems. By conducting integration test using System Integration laboratory(SIL), it is confirmed that the introduced design approach meets the safety requirements of the MEP system.

Design on Flight-Critical Function of Mission Computer for KUH (한국형기동헬기 임무컴퓨터 비행필수기능 설계)

  • Yu, Yeon-Woon;Kim, Tae-Yeol;Jang, Won-Hong;Kim, Sung-Woo;Lim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • Avionics system tends to be designed to have the integrated architecture, and it is getting difficult and complex to verify the flight-critical function because of sophisticated structure. In Korean Utility Helicopter, mission computer acts as the MUX Bus Controller to handle the data from both communication, identification, mission/display and survivability equipment inside Mission Equipment Package and aircraft subsystems such as fuel system and electrical system while it is interfacing with Automatic Flight Control System and Full-Authority Digital Engine Control via ARINC-429 bus. The Flight Displays which is classified as flight-critical function in aircraft is implemented on Primary Flight Display after mission computer processes data from AFCS in order to generate graphics. This paper defines the flight-critical function implemented in mission computer for KUH, and presents the static and dynamic test procedures which is performed on System Integration Laboratory along with Playback Recorder prior to flight test.

Design and Verification of Mission Equipment Package System for Korean Utility Helicopter (한국형 기동헬기 임무탑재장비체계 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Yu, Yeon-Woon;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.388-396
    • /
    • 2011
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). MEP system development is classified mission-critical embedded system but KUH MEP system developed including flight-critical data implementation. It is important to establish the good development and verification process for the successful system development. This paper describe the development and verification process in each phase for the KUH MEP system. MEP system design is verified through the qualification test, system failure test and compatibility test in System Integration Laboratory(SIL).

A Study on The Effective Technology Readiness Assessment Method for System Development Project (체계개발 사업의 효과적인 기술성숙도 평가방법에 대한 연구)

  • Kim, Hyun Woo;Ko, Jeong Hwan;Chung, Eui Seung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.2
    • /
    • pp.144-149
    • /
    • 2015
  • In this study, the effective technology readiness assessment (TRA) method for system development project is suggested. We analyze the domestic and foreign TRA practice and derive the new idea to resolve the problems found from the analysis. Domestic and foreign organizations develop and use checklist for the precise TRA, but the checklist has some problems in type of questions and analysis of assessment. TRA method using the original TRL definition or the checklist should be selected depending on the project characteristic. Questions of the checklist should be classified into critical or non-critical according to their importance. Finally, Test and evaluation master plan (TEMP) in system engineering process can provide an obvious criteria to assess technology readiness level (TRL) of critical technology elements (CTE) composing the system.

A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers (임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법)

  • Kim, Taehyon;Bae, Jungil;Shin, Jinbeom;Cho, Kilseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.

A Study on Mission Critical Factors for Software Test Enhancement in Information Technologies Development of Public Sector (Mission Critical 공공 정보화 구축 시험평가 개선 지표 연구)

  • Lee, Byung-hwa;Lim, Sung-ryel
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.97-107
    • /
    • 2015
  • Up until recently, Korea has ranked the first place in UN e-Government Survey for three consecutive years. In keeping with such accomplishment, the size of budget execution has been consistently growing in accordance with Korea's Government 3.0 policy and vision, leading to increase in big-sized informatization projects in the business. Especially in mission critical public sector's infrastructure where it affects many people, growing demand for establishing high-quality information system with new technologies being brought to attention in order to meet the complex needs of citizens. National defense information system, being one of representative domains examples in the concerned area, established high military competency by applying breakthrough technology. Network-oriented national defense knowledge informatization was set as the vision in order to implement core roles in making efficient national defense management; and effort has been made to materialize the vision by making advancement in national defense's information system and its informatization implementation system. This research studies new quality index relevant to test and evaluation (T&E)of informatization business in national defense which is the representative example of mission critical public sector's infrastructure. We studied international standards and guidelines, analyzed actual T&E cases, and applied them to the inspection items that are currently in use, complying with the e-government law (Act No. 12346, Official Announcement Date 2014. 1.28., Enforcement Date 2014. 7.29.) As a result of productivity analysis, based on hypothesis in which suggested model was applied to T&E of the national defense informatization business, we confirmed the possibility of enhancement in the T&E productivity by assessing reliability, expertise, and safety as evaluation factors.

Control Variables of Remote Joint Analysis Realization on the M2M Case

  • Lim, Sung-Ryel;Choi, Bo-Yun;Lee, Hong-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.98-115
    • /
    • 2012
  • New trend called ubiquitous leads the recent business by standardization and integration. It should be the main issue how to guarantee the integration and accountability on each business, especially in mission critical system which is mainly supported by M2M (Machine to Machine) control mechanism. This study is from the analysis of digital forensics case study that is from the M2M Sensing Control Mechanism problem of the "Imjin River" case in 2009, where a group of family is swept away to death by water due to M2M control error. The ubiquitous surroundings bring the changes in the field of criminal investigation to real time controls such as M2M systems. The needs of digital forensics on M2M control are increasing on every crime scene but we suffer from the lack of control metrics to get this done efficiently. The court asks for more accurately analyzed results accounting high quality product development design. Investigators in the crime scene need real-time analysis against the crime caused by poor quality of mission critical systems. It seems to be every need of Real-Time-Enterprise, so called ubiquitous society on the case. We try to find the efficiency and productivity in discovering non-functional design defects in M2M convergence products focusing on three metrics in study model with quick implementation. Digital forensics system in present status depends on know-how of each investigator and is hard to expect professional analysis on every field. This study set up a hypothesis "Co-working of professional investigators on each field will qualify Performance and Integrity" especially in mission critical system such as M2M and suggests "Online co-work analysis model" to efficiently detect and prevent mission critical errors in advance. At the conclusion, this study proved the statistical research that was surveyed by digital forensics specialists around M2M crime scene cases with quick implementation of dash board.

Critical Design of MIMAN CubeSat for Aerosol Monitoring Mission (미세먼지 관측 임무를 위한 MIMAN 큐브위성 상세 설계)

  • Jin, Sungmin;Kang, Dae-Eun;Kim, Geuk-Nam;Kim, Naeun;Kim, Young-Eon;Kim, Pureum;An, Seungmin;Ryu, Han-Gyeol;Park, Sang-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1027-1035
    • /
    • 2021
  • We presents a design of 3U cubesat MIMAN (Monochrome imaging for monitoring aerosol by nano-satellite) for aerosol monitoring mission with high spatial resolution. The main objective of MIMAN mission is to take images of aerosols around Korea and to provide auxiliary data for GK 2B cloud masking. For this mission, we derived mission requirements and constraints for the MIMAN mission. We designed the mission architecture and concept of operations. To reduce risk factors in space operation, we considered the safety of the communication. In every operation modes, UHF communication is available so that the cubesat can operate based on the ground commands. So, we can handle every problem at the ground station during mission operations. Based on the mission and concept of operations, we confirmed that the system design satisfied the system requirements. We designed the system interface considering data flow of each hardware, and evaluated the safety of the system with system budget analysis.

Preliminary Analysis of Delta-V Requirements for a Lunar CubeSat Impactor with Deployment Altitude Variations

  • Song, Young-Joo;Ho, Jin;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.257-268
    • /
    • 2015
  • Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.