• Title/Summary/Keyword: Mission Allocation

Search Result 36, Processing Time 0.026 seconds

Multi-UAV Mission Allocation and Optimization Technique Based on Discrete-Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션 기반의 다수 무인기 임무 할당 및 최적화 기법)

  • Lee, Dong Ho;Jang, Hwanchol;Kim, Sang-Hwan;Chang, Woohyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this paper, we propose a heterogenous mission allocation technique for multi-UAV system based on discrete event modeling. We model a series of heterogenous mission creation, mission allocation, UAV departure, mission completion, and UAV maintenance and repair process as a mathematical discrete event model. Based on the proposed model, we then optimize the number of UAVs required to operate in a given scenario. To validate the optimized number of UAVs, the simulations are executed repeatedly, and their results are analyzed. The proposed mission allocation technique can be used to efficiently utilize limited UAV resources, and allow the human operator to establish an optimal mission plan.

Task Allocation Framework Incorporated with Effective Resource Management for Robot Team in Search and Attack Mission (탐지 및 공격 임무를 수행하는 로봇팀의 효율적 자원관리를 통한 작업할당방식)

  • Kim, Min-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2014
  • In this paper, we address a task allocation problem for a robot team that performs a search and attack mission. The robots are limited in sensing and communication capabilities, and carry different types of resources that are used to attack a target. The environment is uncertain and dynamic where no prior information about targets is given and dynamic events unpredictably happen. The goal of robot team is to collect total utilities as much as possible by destroying targets in a mission horizon. To solve the problem, we propose a distributed task allocation framework incorporated with effective resource management based on resource welfare. The framework we propose enables the robot team to retain more robots available by balancing resources among robots, and respond smoothly to dynamic events, which results in system performance improvement.

Application for en-Route mission to Decentralized Task Allocation (경로가 주어진 임무 상황에서 분산 임무할당 알고리즘의 적용 방안 연구)

  • Kim, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.156-161
    • /
    • 2020
  • In an environment that operates multiple UAVs, the use of a decentralized task allocation algorithm has more robustness from a single failure of UAV on the mission because there is no central command center. In addition, UAVs have situational awareness and redistribute tasks among themselves, which can expand the mission range. The use of multiple UAVs in a mission has increased as the agent hardware has decreased in size and cost. The decentralized mission-planning algorithm has the advantages of a larger mission range and robustness to a single failure during the mission. This paper extended the type of mission the uses CBBA, which is the most well-known decentralized task allocation algorithm, to the point mission and en-route mission. This will describe the real mission situation that has the purpose of surveillance. A Monte-Carlo simulation was conducted in the case of multiple agents in the task-rich environment, and the global rewards of each case were compared.

Functional analysis of Avionics system for an air transport mission (항공 수송 임무 수행을 위한 Avionics 시스템의 기능 분석)

  • Song, Yun-Sub
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.3
    • /
    • pp.40-50
    • /
    • 2009
  • Avionics system's function for an air transport mission is analysed. The starting point for designing a Avionics system is a clear understanding of the mission requirements and the requirement allocation by the top level aircraft system. Therefore, the analysis begins by making a top-down analysis to the aircraft missions. The baseline mission is divided into segments, and each segment is subjected to a detailed analysis to establish the requirements for the Avionics system. Special attention is given to capture the key aspects of interfaces, and to incorporate them into the design.

  • PDF

Analysis and Improvement on Process of Mission Autonomy in UxAS (UxAS의 임무 자율화 절차 및 개선 방안 분석)

  • YunGeun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Mission autonomy system should be embedded on UAV (Unmanned Aerial Vehicle) for mosaic warfare where UAVs autonomously assign tasks to themselves. UxAS (Unmanned x-systems Autonomy Service) proposed by Air Force Research Laboratory is mission autonomy system for unmanned platforms. UxAS has extensible structure composed of numerous module services. However, UxAS can conduct mission autonomy process only when an operator sends an autonomy request. In this paper, We analyze the process of mission autonomy in UxAS, and propose an improved structure of UxAS where mission autonomy process is autonomously triggered by situation awareness service without the request of the operator. The proposed process was validated by simulation.

Development of Performance Evaluation Method for Mission Autonomy Software based on UxAS (UxAS 기반 임무 자율화 소프트웨어 성능 평가 기법 개발)

  • Dong-geon Han;Yun-geun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.331-337
    • /
    • 2024
  • Mission autonomy system should be embedded on UAV (unmanned aerial vehicle) for mosaic warfare where UAVs autonomously assign tasks to themselves. UxAS (unmanned x-systems autonomy service) proposed by Air force research laboratory is mission autonomy system for unmanned platforms. UxAS has extensible structure composed of numerous module services. We have developed mission autonomy system based on UxAS that performs mission allocation and path planning. In this paper, We present a method of analyzing and evaluating the mission autonomy software according to the performance evaluation index.

Genetic algorithm based multi-UAV mission planning method considering temporal constraints (시간 제한 조건을 고려한 유전 알고리즘 기반 다수 무인기 임무계획기법)

  • Byeong-Min Jeong;Dae-Sung Jang;Nam-Eung Hwang;Joon-Won Kim;Han-Lim Choi
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.78-85
    • /
    • 2023
  • For Multi-UAV systems, a task allocation could be a key factor to determine the capability to perform a task. In this paper, we proposed a task allocation method based on genetic algorithm for minimizing makespan and satisfying various constraints. To obtain the optimal solution of the task allocation problem, a huge calculation effort is necessary. Therefore, a genetic algorithm-based method could be an alternative to get the answer. Many types of UAVs, tasks, and constraints in real worlds are introduced and considered when tasks are assigned. The proposed method can build the task sequence of each UAV and calculate waiting time before beginning tasks related to constraints. After initial task allocation with a genetic algorithm, waiting time is added to satisfy constraints. Multiple numerical simulation results validated the performance of this mission planning method with minimized makespan.

Cognitive Radio Anti-Jamming Scheme for Security Provisioning IoT Communications

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4177-4190
    • /
    • 2015
  • Current research on Internet of Things (IoT) has primarily addressed the means to enhancing smart resource allocation, automatic network operation, and secure service provisioning. In particular, providing satisfactory security service in IoT systems is indispensable to its mission critical applications. However, limited resources prevent full security coverage at all times. Therefore, these limited resources must be deployed intelligently by considering differences in priorities of targets that require security coverage. In this study, we have developed a new application of Cognitive Radio (CR) technology for IoT systems and provide an appropriate security solution that will enable IoT to be more affordable and applicable than it is currently. To resolve the security-related resource allocation problem, game theory is a suitable and effective tool. Based on the Blotto game model, we propose a new strategic power allocation scheme to ensure secure CR communications. A simulation shows that our proposed scheme can effectively respond to current system conditions and perform more effectively than other existing schemes in dynamically changeable IoT environments.

A Selection Methodology for Reliability Allocation Models to Minimize the Operating Cost (운영유지비용을 고려한 신뢰도 할당 모형의 선정)

  • Park, Jong-Hwa;Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.31-45
    • /
    • 2009
  • Reliability should be done from the initial stage of development to secure performance and safety of system. To establish and achieve target reliability of a system, reliability should be allocated into the subsystems. In the acquisition and development of a system, frequent failures will cause a negative effect on performing mission and occurs increasing operating cost. This study reviewed and evaluated the existing reliability allocation models using operation and maintenance costs to find the correlation between reliability allocation models and its operating cost. A target system reliability on the diesel engine to be developed for naval vessels is allocated into its subsystem based on the existing reliability allocation models. A selection methodology for reliability allocation models was made to minimize operating cost by using simulation based on the given operating diesel engine data for naval vessels.

A Study on Ammunition Resupply Allocation Model (전시탄약 재보급 할당에 관한 연구)

  • Lee Young-Shin
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.133-140
    • /
    • 2004
  • In this paper, with the limited range of ammunition supply point(ASP) at ammunition battalion in specific corps and light automobile battalion(LAB) directly supports its vehicle for ammunition supply, we propose optimal model to minimize transportation time and logistics cost using integer programming(IP) for efficient ammunition resupply allocation during a given operation period of front combat unit. And then, we consider ammunition treatment and supply capacity of ammunition supply point(ASP), constraint elements of transportation ability considering time and cost, ammunition storage capacity of combat unit, combat situation and unit mission to propose this model. Finally, through numerical example, we examine the applicable feasibility of proposed model.