• Title/Summary/Keyword: Missile Allocation Problem

Search Result 12, Processing Time 0.016 seconds

Efficient Simulated Annealing Algorithm for Optimal Allocation of Additive SAM-X Weapon System (Simulated Annealing 알고리듬을 이용한 SAM-X 추가전력의 최적배치)

  • Lee, Sang-Heon;Baek, Jang-Uk
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.370-381
    • /
    • 2005
  • This study is concerned with seeking the optimal allocation(disposition) for maximizing utility of consolidating old fashioned and new air defense weapon system like SAM-X(Patriot missile) and developing efficient solution algorithm based on simulated annealing(SA) algorithm. The SED(selection by effectiveness degree) procedure is implemented with an enhanced SA algorithm in which neighboring solutions could be generated only within the optimal feasible region by using a specially designed PERTURB function. Computational results conducted on the problem sets with a variety of size and parameters shows the significant efficiency of our SED algorithm over existing methods in terms of both the computation time and the solution quality.

A Berth Allocation Problem to Maximize the Available Rate of Naval Vessels (함정 가동률 최대화를 위한 선석할당문제)

  • Won, Hyun-Sik;Ahn, Tae-Ho;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.19-27
    • /
    • 2009
  • This paper addresses the berth allocation problem in naval ports. Navy vessels need various services such as emergency repair, missile loading, oil supply and many others while commercial vessels only unload and load container at the port. Furthermore, naval vessels have to shift frequently due to a limited capacity of the port. The objective of this paper is to minimize the total number of nesting vessels at the naval port. In other word, the objective is to maximize the total number of naval battleships engaging in the sea. A mixed integer programming(MIP) model is developed and experiments are conducted with ILOG CPLEX 11.0. We compare the computational results of the MIP model to the current scheduling approach by the ROK Navy. The results showed that MIP model performed well by minimizing the number of nesting vessels. and avoiding unnecessary shifts.