• Title/Summary/Keyword: Missile Aerodynamics

Search Result 27, Processing Time 0.027 seconds

LFT Modeling and Robust Stability Analysis of Missiles with Uncertain Parameters

  • Hou, Zhen-Qian;Liang, Xiao-Geng;Wang, Wen-Zheng;Li, Rui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • The structured singular value (${\mu}$) analysis based method has many advantages for the robust stability analysis of missiles with uncertain parameters. Nevertheless, the present linear fractional transformation (LFT) modeling process, which is the basis of ${\mu}$ analysis, is complex, and not suitable for automatic implementation; on the other hand, ${\mu}$ analysis requires a large amount of computation, which is a burden for large-scale application. A constructive procedure, which is computationally more efficient, and which may lead to a lower order realization than existing algorithms, is proposed for LFT modeling. To reduce the calculation burden, an analysis method is developed, based on skew ${\mu}$. On this basis, calculation of the supremum of ${\mu}$ over a fixed frequency range converts into a single skew ${\mu}$ value calculation. Two algorithms are given, to calculate the upper and lower bounds of skew ${\mu}$, respectively. The validity of the proposed method is verified through robust stability analysis of a missile with real uncertain parameters.

Research on Robust Stability Analysis and Worst Case Identification Methods for Parameters Uncertain Missiles

  • Hou, Zhenqian;Liang, Xiaogeng;Wang, Wenzheng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain method can only analyze each respective channel at several interval points within uncertain parameter space. Discontinuous calculation and couplings between channels will lead to inaccurate analysis results. A method based on the ${\nu}$-gap metric is proposed, which is able to comprehensively evaluate the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing hybrid optimization algorithm, which has global and local searching ability, is used to search for a parameters combination that leads to the worst stability within the space of uncertain parameters. Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain parameters; the results verify the feasibility and accuracy of the method.

Aerodynamics and Flight Control of Air Vehicle with Variable Span Morphing Wing (가변스팬 모핑날개를 가진 비행체의 공력특성 및 비행 제어)

  • Bae, Jae-Sung;Hwang, Jai-Hyuk;Park, Sang-Hyuk;Kim, Jong-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • In the aerospace field, the study on a morphing-wing is in progress to improve flight performance and perform multi flight mission. There are many concepts of morphing-wing such as camber-change, wing-twist, variable-span, and so on. In this study, the aerodynamic characteristics and flight control of an air vehicle with a variable-span morphing wing (VSMW) have been investigated. VSMW with symmetric span control(SSC) can increase cruising range of aircraft by reducing drag in various flight condition. VSMW with anti-symmetric span control(ASSC) can be used in the roll control of an aircraft. The flight control about pure rolling dynamic system and full dynamic system have been performed about the cruise missile.

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil (고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성)

  • Yoo, Jae-Kyeong;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK (고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구)

  • Yoo, J.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.