• 제목/요약/키워드: Missile Aerodynamics

검색결과 27건 처리시간 0.03초

고받음각에서 기동하는 미사일의 공력-구조 연계 해석 (FLUID-STRUCTURE INTERACTION ANALYSIS FOR HIGH ANGLE OF ATTACK MANEUVER MISSILE)

  • 노경호;박미영;박수형;이재우;변영환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.111-114
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM) are used to perform aerodynamics analysis and structure analysis. For the fluid-structure interaction analysis, each technology should be considered as well. The process of aerodynamics-structure coupled analysis can be applied to various integrated analyses from many research fields. In this study, the aerodynamics-structure coupled analysis is performed for the missile at high angle of attack condition through the use of Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For this purpose, the aerodynamics-structure coupled analyses procedure for the missile are established. The results of the integrated analysis are compared with rigid geometry of the missile and the effect of the deformation will be addressed.

  • PDF

Numerical Simulations of the Supersonic Jet Impingement in a Confined Plenum of Vertical Launching System

  • Lee Kwang-Seop;Lee Jin-Gyu;Hong Seung-Kyu;Ahan Chang-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.301-305
    • /
    • 2006
  • The Vertical Launching System design is especially complicated by complex flow structure in a plenum with the severe thermal state and high pressure load form the hot exhaust plume. The flow structures are numerically simulated by using the commercial code, CFD-FASTRAN with the axi-symmetrical Navier-Stokes equations. Two different cases are considered; that is, the stationary fire and the moving fire.

  • PDF

Cross-flow Analogy and Euler Solutions for Missile Body Aerodynamics

  • Lee, Jae-Myung;Park, Seung-O;Kim, In-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권2호
    • /
    • pp.9-16
    • /
    • 2000
  • For aerodynamic design of missile bodies of non-circular cross-section, the combination of the slender body theory and the cross-flow analogy can hardly be applied owing to the lack of experimental data. An alternative is to utilize the Euler solution in the design stage. For enhanced accuracy, however, an adequate viscous correction is necessary to the Euler solution. In this work, such a procedure is examined to compensate the viscous effect by utilizing the concept of proportionality factor in cross-flow analogy. Predictions of aerodynamic coefficients combining the Euler solution and the viscous correction via proportionality factor are made for a missile body of elliptic cross-section. Results indicate that the present approach can be adopted in designing missile bodies of non-circular cross-sections.

  • PDF

타원형 Ogive헤드에 의한 미사일 구조의 RCS감소 (RCS Reduction of Generic Missile from Elliptical Ogive Head)

  • 심재륜;한대현
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.901-905
    • /
    • 2000
  • 본 연구는 미사일 헤드와 같은 돔형의 실린더형 ogive (Cylindrical Ogive)를 타원형 ogive(Elliptical Ogive)로 대치하여 지상의 레이다로부터 미사일의 탐지확률을 줄이는 연구이다. 미사일의 RCS(Radar Cross Section)를 계산하기 위해 GTD(Geometrical Theory of Diffraction)/UTD(Uniform GTD)를 사용하였다. 향후, 형상변경에 따른 미사일 헤드의 공기역학(aerodynamics)적인 타당성 검토가 이루어져야 한다.

  • PDF

인공신경망 기반의 유도탄 노즈 공력계수 예측 연구 (Application of Artificial Neural Network to Predict Aerodynamic Coefficients of the Nose Section of the Missiles)

  • 이정용;이복직
    • 한국항공우주학회지
    • /
    • 제49권11호
    • /
    • pp.901-907
    • /
    • 2021
  • 본 연구에서는 다양한 유도탄 노즈 형상과 유동조건에 대한 공력계수를 예측할 수 있는 인공신경망 기반의 공력 산출 기법을 제시한다. Missile DATCOM를 통해 유도탄 노즈 형상, 유동조건, 유도탄 공력계수로 구성된 학습 데이터셋을 구축하였다. 인공신경망의 예측 성능을 향상시키기 위해 데이터 전처리 과정으로 데이터 정규화를 진행하였고, 과대적합을 방지하기 위해 신경망 학습 과정 중 드롭아웃 기법을 사용하였다. 신경망을 통해 학습하지 않은 유도탄 노즈 형상과 유동조건에 대한 공력계수를 예측하였고 이를 Missile DATCOM 해석 결과와 비교하여 신경망의 성능을 검증하였다. 그 결과 본 연구에서 구축한 신경망은 학습하지 않은 유도탄 노즈 형상과 유동조건에 대한 유도탄 공력계수를 정확하게 산출할 수 있음을 확인하였다.

측방 제트가 아음속 유도탄 종방향 공력특성에 미치는 영향 연구 (A Study on the Effects of Side Jets to the Longitudinal Aerodynamics of Subsonic Missile)

  • 고범용;허기훈
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.393-404
    • /
    • 2017
  • Side jet effect on the aerodynamic characteristics of a missile was investigated using experimental and computational methods. A couple of side jets were injected toward outward downstream at mid point of missile body. Cold air jet was used in the wind tunnel test, and cold and hot jet were used in the computation. Wind tunnel test was carried out with jet and without jet, and calculation was performed for three cases ; no jet, cold air jet, and hot mixture gas jet. From the comparison of measured and calculated data for all cases, two points could be deduced. Firstly, side jet made static stability to be unstable by increasing body normal force near the side jet exit and by decreasing tail normal force. Secondly, hot mixture gas had more significant effect on the static stability of a missile-type body than cold air jet.

타원형 Ogive 형상을 가지는 헤드의 Low RCS 특성 (Low RCS Characteristics of an Elliptical Ogive Head)

  • 심재륜;한대현;김효태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(1)
    • /
    • pp.263-266
    • /
    • 2000
  • An elliptical ogive head for a generic missile is proposed to reduce its detectable probability from a ground defense radar. Numerical RCS results of a generic missile with an elliptical ogive head are evaluated using the GTD/UTD (Geometrical Theory of Diffraction/Uniform GTD). The results are compared with those of a cylindrical ogive head. In the sense of aerodynamics, the Performance evaluation of an elliptical ogive head for a generic missile should be followed.

  • PDF

3-루프 가속도 오토파일롯 구조를 갖는 유도탄의 공력특성 연구 (Study on Missile Aerodynamic Characteristics with Three Loop Acceleration Autopilot Structure)

  • 김윤식;김승환
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.633-638
    • /
    • 2002
  • We study how the missile autopilot with three loop acceleration structure is related to the aerodynamic characteristics. First, the relationships between the response characteristics of wingless-tail controlled missile and aerodynamics are derived. Next the maximum allowable performance limit of autopilot and the design direction for a missile shape are indicated using the property of zero. The method proposed in this paper may give a help to the missile autopilot system design and determination of the shape of aerodynamic. Also, the validity of proposed method is demonstrated via numerical example.

초음속 유도탄의 측추력기 작동시 풍동실험을 위한 CFD 해석 연구 (Computational Investigation of Similarity Law and Wind Tunnel Testing for Side Jet Influence on Supersonic Missile Aerodynamics)

  • 홍승규;성웅제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.87-90
    • /
    • 2002
  • Computational study has been undertaken to investigate the aerodynamic influence of side jet on a supersonic missile and to find a similarity condition between the flight condition and the wind tunnel testing. Tasks were performed to validate the existing Raytheon test body with side jet, to simulate the flow inside the supersonic wind tunnel, and to compare the flow fields between the missile in free flight and that in the wind tunnel. Then sub-scale model of body-tail configuration was analyzed to estimate the influence of the side jet on the missile components. It Is found that the influence of side Jet is not as significant on the tail region as on the body surface and a simple algebraic formula for aerodynamic coefficients accounting for the side jet as a point force may be cautiously utilized in setting up control logic.

  • PDF

공력 조종면 데이터베이스 확장을 통한 저 충실도 해석자의 정확도 개선 (Accuracy Improvement of Low Fidelity Solver by Augmentation of Fin Aerodynamic Database)

  • 강은지;김영화;임경진;이재은;강경태
    • 한국군사과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.45-54
    • /
    • 2022
  • There has been necessity to supplement the fin database to improve the accuracy of low-fidelity aerodynamic solver for missile configuration. In this study, fin database is expanded by in-house solver, utilized in the triservice data the previously established into regions beyond means of CFD. Fin alone data of CFD analysis results in the original region is matched well with triservice data originated from the wind tunnel tests. Extensive fin aerodynamic data from CFD analysis is added to the existing database of the low-fidelity solver. For confirmation, aerodynamic characteristics of body-tail and body-canard-tail missile configurations is computed using upgraded low-fidelity solver at transonic region. The result using improved solver shows good agreements with wind tunnel test and CFD analysis results, which implies that it becomes more accurate.