• Title/Summary/Keyword: Miscible

Search Result 123, Processing Time 0.033 seconds

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

Melt Rheology of Ethylene 1-Octene Copolymer Blends Synthesized by Ziegler-Natta and Metallocene Catalysts

  • Kim, Hak-Lim;Dipak Rana;Hanjin Kwag;Soonja Choe
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 2000
  • The melt rheology of four binary blends of ethylene 1-octene copolymers (EOCs) which consist of one component by Ziegler-Natta and another by metallocene catalysts, was studied to elucidate miscibility in the melt by using torsion rheometer at 200$\^{C}$ and different shear rates. The four blend systems, designated into the FA+FM, SF+FM, RF+EN, and RF+PL blend, are divided and interpreted based on the melt index (MI), the density and the comonomer contents. The melt viscosity such asη', η", and η$\^$*/ is weight average value if the comonomer contents are similar, otherwise they show different manner. The experimental resole are analyzed based on the Cole-Cole plot of logη' uersus log η", the logarithmic plots of the dynamic storage modulus (G') versus the dynamic loss modulus (G") for various blend compositions, and the melt viscosity of 11', n", and f" as a function of blend compositions. As a cerise-quence, the FA+FM blend is miscible, but the SF+FM, RF+EN, and RF+PL blends are not in the melt. Thus miscibility of the blends studied in this communication is suggested to strongly influence by the comonomer contents rather than the density or the MI.

  • PDF

Morphological Effect of Dispersed Phase on Gas Separation Properties through Heterophase Polymer Membrane: Theoretical and Experimental Approaches.

  • Park, Cheolmin;Jo, Won-Ho;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.55-56
    • /
    • 1996
  • Heterophase polymer system has been attractive for a potential applicability to gas separation membrane material. It has been known that there is a trade-off between gas permeability and its selectivity in common polymers. Therefore, the heterophase polymer can be an alternative for a gas separation membrane material because its transport properties can be readily controlled by blending of two different polymers. The transport properties of immiscible polymer blends strongly depend upon the intrinsic transport properties of corresponding polymers. Another important factor to determine the transport properties is their morphology: volume fraction, size and shape of dispersed phase. Although the effect of the volume fraction of the dispersed phase on the transport properties has been widely investigated, the size and shape effects have been paid attention very much. In an immiscible polymer blend of two polymers, its morphology is primarily controlled by its volume fraction of dispersed phase. Therefore, the effect of the size of the dispersed phase can be hardly seen. Therefore, a block copolymer has been commonly employed to control their morphology when each block is miscible with one or the other phase. In this work, gas transport properties will be measured by varying the morphology of the heterophase polymer membrane. The transport properties will be interpreted in terms of their morphology. The effect of the volume fraction of the PI phase and, in particular, its size effect will be investigated experimentally and theoretically.

  • PDF

Synthesis of a New α-Dioxime Derivative and Its Application for Selective Homogeneous Liquid-Liquid Extraction of Cu(II) into a Microdroplet Followed by Direct GFAAS Determination

  • Ghiasvand, A. R.;Shadabi, S.;Kakanejadifard, A.;Khajehkoolaki, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.781-785
    • /
    • 2005
  • A fast and reliable method for the selective separation and preconcentration of $Cu^{2+}$ ions using homogeneous liquid-liquid extraction was developed. A new $\alpha$-dioxime derivative (2H-1,4-benzothioazine-2,3(4H)dionedioxime, Dioxime I) was synthesized and investigated as a suitable selective complexing ligand for $Cu^{2+}$ ions. Zonyl FSA (FSA) was applied as a phase-separator agent under the slightly acidic pH conditions. Under the optimal experimental conditions ([FSA] = 3.2% w/v, [THF] = 19.5% v/v, [Dioxime I] = 1.9 ${\times}\;10^{-3}$ M, and pH = 4.7), 10 ${\mu}g\;of\;Cu^{2+}$ in 5.2 mL aqueous phase could be extracted quantitatively into 80 $\mu$L of the sedimented phase. The maximum concentration factor was 65-fold. The limit of detection of the proposed method was 0.005 ng $mL^{-1}$. The reproducibility of the proposed method, on the 10 replicate measurements, was 1.3%. The influence of the pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the complexing ligand and the effect of different diverse ions on the extraction and determination of $Cu^{2+}$ ions were investigated. The proposed method was applied to the extraction and determination of $Cu^{2+}$ ion in different synthetic and natural water samples.

Thermal Properties and Crystallization of Biodegradable Poly(L-lactic acid) and Poly($\beta$-hydroxynonanoate) Blend (생분해성 Poly(L-lactic acid)/Poly($\beta$-hydroxynonanoate) 블렌드의 열적 성질 및 결정화거동)

  • 박상혁;김영백;이두성
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.477-487
    • /
    • 2000
  • A series of poly(L-lactic acid) (PLLA)/poly($\beta$-hydroxynonanoate) (PHN) blend were prepared to study the miscibility and the crystallization behaviors. The thermal behaviors and characterization of PLLA/PHN blends Were studied using differential scanning calorimetry (DSC), XRD and polarizing optical microscopy (POM). The PLLA and PHN are partially miscible in amorphous region. The crystallinity of PLLA increased as the content of PHN increased, and T$_{g}$, T$_{c}$, and T$_{m}$ of PLLA shift as the content of PHN increased. Moreover, the number of PLLA spherulite increased as the content of PHN increased in the POM experiment. Thus, PHN acted as a nucleating agent to PLLA.

  • PDF

Measurement of Flash Points for n-hexanol+n-butyric acid and n-butanol+propionic acid by Seta-flash Closed Cup Method (Seta-flash 밀폐식 방법에 의한 n-hexanol+n-butyric acid 계와 n-butanol+propionic acid 계의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.76-80
    • /
    • 2014
  • The flash point is one of the most important physical properties used to determine the fire hazard of flammable liquid mixture and defined as the lowest temperature at which a liquid produces sufficient vapor to form a combustible mixture with air. The main purpose of this paper is to measure and predict the flash point of binary flammable miscible mixtures. The flash points for n-hexanol+n-butyric acid and n-butanol+propionic acid, were measured by using Seta-flash closed cup method. The experimentally derived data were correlated with the binary interaction parameters of the van Laar and NRTL equations through the optimization method. The flash points estimated by these correlations were compared with those calculated by the method based on Raoult's law. The optimization method were found to be better than the method based on the Raoult's law.

Microexplosive Vaporization of Miscible Binary Fuel Droplets (미세폭발을 가진 혼화 이성분 연료 액적의 증발 현상)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.120-131
    • /
    • 2005
  • The evaporation characteristics of single and multicomponent droplets hanging at the tip of a quartz fiber are studied experimentally at the different environmental conditions under normal gravity. Heptane and Hexadecane are selected as two fuels with different evaporation rates and boiling temperatures. At the first step, the evaporation of single component droplet of both fuels has been examined separately. At the next step the evaporation of several blends of these two fuels, as a binary component droplet, has been studied. The temperature and pressure range is selected between 400 and 700 $^{\circ}C$, and 0.1 and 2.5 MPa, respectively. High temperature environment has been provided by a falling electrical furnace. The initial diameter of droplet was in range of 1.1 and 1.3 mm. The evaporation process was recorded by a high speed CCD camera. The results of binary droplet evaporation show the three staged evaporation. In the the first stage the more volatile component evaporates. The droplet temperature rises after an almost non evaporating period and in the third stage a quasi linear evaporation takes place. The evaporation of the binary droplet at low pressure is accompanied with bubble formation and droplet fragmentation and leads to incomplete microexplosion. The component concentration affects the evaporation behavior of the first two stages. The bubble formation and droplet distortion does not appear at high environment pressure. Nomenclature

  • PDF

The Effects of Intramolecular Interactions of Random Copolymers on the Phase Behavior of Polymer Mixtures

  • Kim, M. J.;J. E. Yoo;Park, H. K.;Kim, C. K.
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • To explore the effects of intramolecular interactions within the copolymer on the phase separation behavior of polymer blends, copolymers having two different types of intramolecular interactions, i.e., intramolecular repulsion and intramolecular attraction were prepared . In this study, poly(styrene-co-methylmethacrylate) (P(S-MMA)) having intramolecular repulsion caused by positive interaction between styrene and MMA and poly(styrene-co-ethyl-methacrylate) (P(S-EMA)) and poly(styrene-co-cyclohexylmethacrylate) (P(S-CHMA)) having intramolecular attraction caused by negative interaction between styrene and methacrylate were blended with tetramethyl poly-carbonate (TMPC). The phase behavior of blends was examined as a function of copolymer composition and blend composition. TMPC formed miscible blends with styrenic copolymers containing less than certain amount of methacrylate. The phase separation temperature of TMPC blends with copolymer such as P(S-MMA) and P(S-EMA), first increases with methacrylate content, goes through a maximum and then decreases just prior to the limiting content of methacrylate for miscibility, while that of TMPC blends with P(S-CHMA) always decreases. The calculated interaction energy for TMPC-P(S-EMA) pair is negative and monotonically increases with EMA content of the copolymer. Such behavior contradicted the general notion that systems with more favorable energetic interactions have higher LCST, The detailed inspection of the lattice-fluid theory related to the phase behavior was performed to explain such behavior.

Control of Enzymatic Degradability of Biodegradable Polylactide by Blending with Non-degradable Polymers (비 분해성고분자와 블렌드를 이용한 생분해성 폴리유산의 효소분해속도 조절)

  • Jang, Seong-Ho;Park, Sang-Bo;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1161-1167
    • /
    • 2010
  • The effects of addition of non degradable polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) on the rate of enzymatic degradation of biodegradable poly(l-lactide) (PLLA) have been studied in term of surface structure. Since a component in multicomponent polymeric system has shown surface enrichment, PS and PMMA which have lower surface energy than PLLA were selected as a minor blend component (5 wt%). Enzymatic degradation was carried out at $37^{\circ}C$ and pH 8.5 in the aqueous solution of Proteinase K. Two blend systems, partially miscible (PS/PLLA) and immiscible (PMMA/PLLA), showed the surface enrichment of 4 and 2 times of PS and PMMA, respectively. From the weight loss profile data, the slow degradation rate of both blend films was observed. This indicates that PS or PMMA domains which exist at surface act as a retardant of enzymatic attack.

A Study on the Breakdown Characteristics of Electrodeposited Polyimide Film at High Temperature (전착된 폴리이미드 박막의 고온영역에서 절연파괴 특성에 관한 연구)

  • Yu, Y.B.;Sin, D.K.;Kim, B.J.;Kim, J.S.;Pak, K.S.;Kim, S.K.;Cho, D.H.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1498-1501
    • /
    • 1996
  • To evaluate insulating properties of polyimide thin film on high temperature over $100\;^{\circ}C$, polyimide film were prepared by electrophoretic deposition onto metal surface from nonaqueous emulsion. The emulsion is made by adding a solution of the resin to a precipitant, which is an organic liquid compeltely miscible with the solvent of the organic resin solution, but which does not dissolve the resin. The polyimide film obtained by annealing shows good insulation properties of 5.8 MV/cm at elevated temperature and breakdown strength of the film reveals thickness dependence.

  • PDF