• Title/Summary/Keyword: Mirror Surface-Grinding

Search Result 72, Processing Time 0.028 seconds

Ultra-Precision Machining of Off-Axis Asymmetric Large-area Reflecting Mirror Using ELID Grinding Process (ELID 연삭을 이용한 비축 비구면 렌즈의 초정밀 가공)

  • Jung, Myung-Won;Shin, Gun-hwi;Kim, Geon-Hee;Ohmori, Hitoshi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • This study focused on the application of ELID mirror-surface grinding technology to the manufacture of off-axis asymmetric large-area reflecting mirrors made of BK7 glass. The size of the parts, such as asymmetric large-area mirrors or lens, made form-accuracy or roughness especially hard to measure after machining because of the measuring range limit of measurement devices. In this study, the ELID grinding system has been set up for mirror-surface machining experiments manufacturing off-axis asymmetric lenses. A measuring method using a reference workpiece has been suggested to measure the form-accuracy and roughness. According to the experimental results, even when using only a reference workpiece, it is confirmed that the surface roughness was 8 nmRa and form-accuracy was 80 nmRMS, with a best fit asymmetric radius when using a grinding wheel of #8,000. It is found that the accuracy of large-area parts could be estimated by the proposed process.

Study on Ultra-Precision Grinding Condition of WC-Co (금형용 WC-Co의 초정밀 연삭 가공 조건에 관한 연구)

  • S.J. Heo;J.H. Kang;W.I. KIm
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • Recently, WC-Co have some excellent properities as the material for the mechanical component such as metallic moulding parts, ball dies parts, and punch parts. This paper describes the surface roughness and grinding force caused by experimental study on the surface grinding of WC-Co with ultra-precision like a mirror shape using diamond wheel. Also, some investigations are carried out using WA grinding wheel to increase improved ground surface roughness such as polishing, lapping effect. Some important results obtained here are summarized as follow. 1) Within this experimental grinding condition, we can be obtained $R_{max}.\;2\mu\textrm{m}\;R_a\;0.3\mu\textrm{m}$ whichare the most favourable ground surface roughness using #140 diamond wheel, and improved surface roughness values about 20 .approx. 25% throughout 5 times sparkout grinding 2) The value of surface roughness is Rmax. $0.49\mu\textrm{m},\;R_a\;0.06\mu\textrm{m}$ using #600 diamond wheel. 3) The area of no rack zone is less than $F_{n}$ 0.27N/mm, Ft 0.009N/mm

  • PDF

A Study on the Mirror Surface Grinding for Brittle Materials with Inprocess E.D.M. Dressing (연속 방전드레싱에 의한 경취재료의 경면연삭에 관한 연구)

  • 김정두;이은상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.785-792
    • /
    • 1994
  • Ferrite is widely used in the material of magnetic head, but is difficult of grinding because of their brittleness and hardness. Therefore, diamond wheel with superabrasive is required for surface grinding of this brittle material. But the conventional dressing method can not apply to the diamond wheel with superabrasive. In this study describes a newly proposed method for carrying out effective inprocess dressing of diamond wheel with superabrasive. Using the IEDD the surface roughness of workpiece was improved and grinding force was very low. Resently IEDD is good method to obtain the efficiency grinding and surface grinding of brittle materials.

An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine (대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구)

  • Song, Chang Kyu;Khim, Gyungho;Hwang, Jooho;Kim, Byung Sub;Park, Chun Hong;Lee, Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.

A study on the development of ultra-precision grinding system and manufacturing properties for aspheric surface micro lens (비구면 마이크로 렌즈 가공을 위한 초정밀 연삭 시스템 개발 및 가공 특성에 관한 연구)

  • Baek S.Y.;Lee H.D.;Kim S.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.15-18
    • /
    • 2005
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, The development of ultra-precision grinding system and manufacturing properties for the aspheric surface micro lens are described. In the work reported in this paper, and ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the surface roughness and profiles accuracy. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $3\;{\mu}m$ P-V and a surface roughness of $0.1\;{\mu}m\;R_{max}$.

  • PDF

A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique (자기연마기술을 이용한 고속절삭공구 성능향상에 관한 연구)

  • Park S.R.;Cho J.R.;Park M.G.;Yang S.C.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1289-1293
    • /
    • 2005
  • We will improve tools performance without the change of a tools' physical shape, if we process mirror like finishing on the surface of cutting tools. Because cutting tools' shapes are very complex, the general method of polishing can't be polished. So we will apply new method of polishing which is magnetic fluid grinding technique. Magnetic fluid grinding technique can polish complex shape's workpiece by pressing the surface of workpiece with magnetic and abrasive grains in magnetic field. Therefore we developed the polishing equipment to improve the performance of cutting tools and experimented on various polishing conditions to determine the polishing conditions of cutting tools.

  • PDF

Reserarch for Possibility of ELID Grinding of Hard Disk Glass (HDD용 Glass Disk의 ELID 연삭 성능 평가)

  • 김경년;김영태;박철우;이용철;대삼정;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • In this paper, machining characteristics of glass for HDD media are researched. Nowadays HDD media are used globally as a data storage device. In generally, it is machined by the lapping. But the lapping process time is long and the productivity is low. In this reason, 1 examined the possibility of ELID grinding of glass fur HDD media. If the machining process of HDD media can be changed to ELID grinding, a product cost will be largely saved. The machines used in this experiment were a special rotary type grinder and a normal rotary grinder. The one has an air bearing spindle, the other has not. Experimental results show the possibility of highly efficient grinding and mirror surface can be achieved by the ELID grinding.

  • PDF

Prototype Development for the GMT FSM Secondary - Off-axis Aspheric Mirror Fabrication -

  • Kim, Young-Soo;Kim, Jihun;Song, Je Heon;Cho, Myung;Yang, Ho-Soon;Lee, Joohyung;Kim, Ho-Sang;Lee, Kyoung-Don;Ahn, Hyo-Sung;Park, Won Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • A prototype of the GMT FSM has been developed to acquire and to enhance the key technology - mirror fabrication and tip-tilt actuation. The ellipsoidal off-axis mirror has been designed, analyzed, and fabricated from light-weighting to grinding, polishing, and figuring of the mirror surface. The mirror was tested by using an interferometer together with CGHs, which revealed the surface error of 13.7 nm rms in the diameter of 1030 mm. The SCOTS test was employed to independently validate the test results. It measured the surface error to be 17.4 nm rms in the diameter of 1010 mm. Both tests show the optical surface of the FSMP mirror within the required value of 20 nm rms surface error.