• Title/Summary/Keyword: Mirror Surface

Search Result 476, Processing Time 0.029 seconds

A study on the manufacture of Large Collimation Reflector using SPDT (SPDT를 이용한 대구경 Collimation Reflector 가공 연구)

  • 김건희;홍권희;김효식;박지영;박순섭;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.897-900
    • /
    • 2002
  • The collimation mirror will be used for thermal vacuum testing of spacecraft. The reflection mirror system to generate parallel beam inside the thermal vacuum chamber. A 600mm diameter aspheric Collimation mirror was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machining, but not polishable due to its ductility. Aspheric large collimation reflector without a conventional polishing process, the surface roughness of 10nmRa, and the from error of $\lambda/2 ~\lambda/4(\lambda$ =632.8 nm) for reference curved surface 600 mm has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of A16061-T651 and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

A Study of Aluminum reflector manufacturing in diamond turning machine (초정밀가공기를 이용한 알루미늄반사경의 절삭특성)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

Fabrication and Experiment of Micromirror with Aluminum Pin-joint (알루미늄 핀-조인트를 사용한 마이크로 미러의 제작과 측정)

  • Ji, Chang-Hyeon;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.487-494
    • /
    • 2000
  • This paper describes the design, fabrication and experiments of surface-micromachined aluminum micromirror array with hidden pin-joints. Instead of the conventional elastic spring components as connection between mirror plate and supporting structure, we used pin-joint composed of pin and staples to support the mirror plate. The placement of pin-joint under the mirror plate makes large active surface area possible. These flexureless micromirrors are driven by electrostatic force. As the mirror plate has discrete deflection angles, the device can be ap;lied to adaptive optics and digitally-operating optical applications. Four-level metal structural layers and semi-cured photoresist sacrificial layers were used in the fabrication process and sacrificial layers were removed by oxygen plasma ashing. Static characteristics of fabricated samples were measured and compared with modeling results.

  • PDF

The Effect of Surface Roughness on Measuring Thermal Emissivity (열 방사율 측정시 표면거칠기의 영향)

  • 오기수;배신철
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.65-70
    • /
    • 2003
  • Thermal emissivity is generally affected by surface situation of material such as roughness. In this study, the effect of surface roughness on measuring thermal emissivity is experimented. And emissivity measurement method and equipment using hemisperical mirror is also reviewed. As the result of this research, thermal emissivity increased as long as increasing surface roughness. So, surface roughness is a essential check point when we measure the emissivity.

A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror (적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구)

  • Yang S.C.;Kim G.H.;Kim H.S.;Shin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.444-447
    • /
    • 2005
  • This paper is described about the technique of ultra-precision machining for a infrared camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM. Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of $\lambda/2\;(\lambda=632.8 nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using A16061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector.

  • PDF

Null lens design for testing of elliptical surface (타원면경 측정 Null 렌즈 설계)

  • 김연수
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.246-249
    • /
    • 2000
  • The null lens is designed for testing the elliptical (conic constant>O) mirror which is the third mirror of the off-axis Three Mirror Anastigmat (TMA) designed as a high resolution camera for remote sensing. The mixed type design is proposed as a new design type which has a small annular flat mirror, but has as twice sensitivity as the autostigmatic type design. It is also shown that the null lens of the Mixed type is better than that of the autostigmatic type in terms of the sensitivity of the wavefront distortion which is given as the magnitude of optical path difference with respect to the change of each surface parameters such as the radius of curvature, thickness of lenses and tested mirror.

  • PDF

A Study on the Characteristics on Ultra Precision Machining of Al6061-T651 (Al6061-T651의 초정밀 절삭특성에 관한 연구)

  • Kim, Geon-Hee;Yang, Sun-Cheol;Park, Yo-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • This paper is described about the technique of ultra-precision machining for an aerospace aspheric mirror. The reflection mirror system generates parallel beams inside a thermal vacuum chamber. A 200mm diameter aspheric mirror was fabricated by SPDTM. Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 10nm Ra, and the form error of ${\lambda}/2$ (${\lambda}$=632.8nm) for reference curved surface 200mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector.

  • PDF

Fabrication of Al mirror with Ni electroplated structure for magnetic actuation (Ni 도금 구조물을 이용한 전자력 구동 Al 미러의 제작)

  • Lim, Tae-Sun;Kim, Yong-Kweon;Choi, Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2239-2241
    • /
    • 2000
  • In this study, we fabricated surface micromachined mirror that is actuated by magnetic force. The mirror was fabricated with Al, and Ni was electroplated on the surface of Al mirror as a magnetic material. The fabricated mirror is actuated by magnetic force of simple solenoid. The maximum deflection angle is about 70$^{\circ}$ when the applied magnetic field is about $1.5{\times}10^4$A/m.

  • PDF

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.