• Title/Summary/Keyword: Mirofin tube

Search Result 1, Processing Time 0.018 seconds

Condensation Heat Transfer of R32 and R454B Inside a Microfin Tube as an Alternative Refrigerant to R410A (R410A 대체냉매 R32와 R454B의 미세핀 관내 응축 열전달)

  • KARAGEORGIS, ANDREAS;HINOPOULOS, GEORGE;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.413-418
    • /
    • 2022
  • This paper presents two-phase condensation heat transfer and pressure drop characteristics of R32 and R454B as an alternative refrigerant to R410A in a 9.52 mm OD microfin tube. The test facility has a straight, horizontal test section with an active length of 2.0 m and is cooled by cold water circulated in a surrounding annular space. The heat transfer coefficients of the annular space were obtained using the modified Wilson plot method. Average condensation heat transfer coefficient and pressure drop data are presented at the condensation temperature of 35℃ for the range of mass flux 100-400 kg/m2s. The average condensation heat transfer coefficients of R32 refrigerant are 35-47% higher than R410A at the mass flux considered in the study, while R454B data are similar to R410A. The average pressure drop of R32 and R454B are much higher than R410A and they are 134-224% and 151-215% of R410A, respectively. R32 and R454B have relatively low GWP and high heat transfer characteristics, so they are suitable as alternatives for R410A.