• Title/Summary/Keyword: Minimum weight design

Search Result 353, Processing Time 0.021 seconds

Size Optimization Design Based on Maximum Stiffness for Structures (구조물의 최대강성 치수최적설계)

  • Shin, Soo-Mi;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • This study presents a structural design optimizing sizes of high-rise steel plane truss members by maximizing stiffness subjected to given volume constraints. The sizing optimum design is evaluated by using a well-known optimality criteria (OC) of gradient-based optimization methods. In typical size optimization methods, truss structures are optimized with respect to minimum weight with constraints on the value of some displacement and on the member stresses. The proposed method is an inversed size optimization process in comparisons with the typical size optimization methods since it maximizes stiffness associated with stresses or displacements subjected to volume constraints related to weight. The inversed approach is another alternative to classical size optimization methods in order to optimize members' sizes in truss structures. Numerical applications of a round shape steel pipe truss structure are studied to verify that the proposed maximum stiffness-based size optimization design is suitable for optimally developing truss members's sizes.

Computational Approach for the Trade-Off Study between the Total Cost and the Member Connections in Steel Frames (강 뼈대구조물의 총 경비와 부재연결과의 상반관계에 관한 연구)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Over the past decade, labor costs have increased relative to the cost of material hardware according to analysts in the construction industry. Therefore, the minimum weight design, which has been widely adopted in the literature for the optimal design of steel structures, is no longer the most economical construction approach. Presently, although connection- related costs is crucial in determining the most cost-effective steel structures, most studies on this subject focused on minimum-weight design or engaged in higher analysis. Therefore, in this study, we proposed a fabrication scheme for the most cost-effective moment-resisting steel frame structures that resist lateral loads without compromising overall stability. The proposed approach considers the cost of steel products, fabrication, and connections within the design process. The optimal design considered construction realities, with the optimal trade-off between the number of moment connections and total cost was achieved by reducing the number of moment connections and rearranging them using the combination of analysis that includes shear, displacement and interaction value based on the LRFD code and optimization scheme based on genetic algorithms. In this study, we have shown the applicability and efficiency in the examples that considered actual loading conditions.

Optimal design of floating substructures for spar-type wind turbine systems

  • Choi, Ejae;Han, Changwan;Kim, Hanjong;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.253-265
    • /
    • 2014
  • The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.

A Study on the Ooptimization of the Stiffened Cylindrical Shell (보강원통셀의 최적구조설계에 관한 연구)

  • 이영신;김대원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.205-212
    • /
    • 1989
  • The minimum weight design for the simply supported orthogonally stiffened cylindrical shell subjected to axial compression is studied by a mathematical programming. A smeared-out method is used for the computation of buckling load in the optimization process and optimization is accomplished by a gradient projection method. Maximum eight design variables and twenty-one inequality constraints considering the buckling, stress and geometric restraints are used. The three stringer types are considered as the optimization models : (1) rectangular stringer (2) I-stringer (3) T-stringer. Two design examples are compared with those in the other studies and the results demonstrate the validity of the present study. From the calculation the design with T-stringer can be more efficient than the one with rectangular or I-stringer.

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

Optimum Design of Composite Laminated Beam Using GA (유전알고리즘을 이용한 복합 적층보의 최적설계)

  • 구봉근;한상훈;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-358
    • /
    • 1997
  • The present paper describes an investigation into the application of the genetic algorithm (GA) in the optimum design of composite laminated structure. Stochastic processes generate an initial population of designs and then apply principles of natural selection/survival of the fittest to improve the designs. The five test functions are used to verify the robustness and reliability of the GA, and as a numerical example, minimum weight of a cantilever composite laminated beam with a mix of continuous, integer and discrete design variables is obtained by using the GA with exterior penalty function method. The design problem has constraints on strength, displacements, and natural frequencies, and is formulated to a multidimensional nonlinear form. From the results, it is found that the GA search technique is very effective to find the good optimum solution as well as has higher robustness.

  • PDF

Computer-Aided Optimal Grillage Design by Multiple Objective Programming Method (다목적함수(多目的函數) 최적화(最適化) 기법(技法)에 의한 격자형(格子型) 구조물(構造物)의 최적설계(最適設計))

  • S.J.,Yim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 1988
  • From the engineering point of view, a synthesis as well as an analysis technique is explored to search for the improved design of grillage which is common in ship structure. As an approximate analysis method for the grillage, an interaction reaction method is developed and compared with the finite element method. It is found that the discrepancy between these two methods is so negligible that the percent method could be used effectively for the grillage analysis. As an optimization technique, a feasible direction method could be used is combined with the intersection reaction method in order to design a minimum weight optimal grillage. The feasible direction method shows a good numerical performance although it requires more calculation times compared with the direct search method. Finally, the application of multiple objective optimization method to grillage is investigated in order to resolve conflicts existed between the multiple objectives which is a common characteristic of structure design problem. Goal programming method is extended to handle a nonlinear property of constraints and objective functions. It seems that the nonlinear goal programming could help not only to establish a relative importance of each objective, but also enable the designer to choose the best combination of design variables.

  • PDF

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.