• 제목/요약/키워드: Minimum variance control

검색결과 83건 처리시간 0.02초

자기회귀 잡음모델을 가진 플랜트의 일반화 최소분산제어 (Generalized minimum variance control of plant with autoregressive noise model)

  • 박정일;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.370-372
    • /
    • 1986
  • In this paper we propose a Generalized Minimum Variance Self-tuning Control of the system with an autoregressive noise model. To establish a Generalized Minimum Variance Control, the control input is also included in a cost function and a novel identity is introduced. The effectiveness of this algorithm is demonstrated by the computer simulation.

  • PDF

Design of Generalized Minimum Variance Controllers for Nonlinear Systems

  • Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.281-292
    • /
    • 2006
  • The design and implementation of Generalized Minimum Variance control laws for nonlinear multivariable systems that can include severe nonlinearities is considered. The quadratic cost index minimised involves dynamically weighted error and nonlinear control signal costing terms. The aim here is to show the controller obtained is simple to design and implement. The features of the control law are explored. The controller obtained includes an internal model of the process and in one form is a nonlinear version of the Smith Predictor.

증분형 추정기를 사용한 오프세트의 일반화 최소분산형 자기동조제어 (Generalized Minimum Variance Self-tuning Control of Offset Using Incremental Estimator)

  • 박정일;최계근
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.372-378
    • /
    • 1988
  • The elimination of offsets such as those induced by load disturbance is a principal requirement in the control of industrial processes. In this paper we propose a self-tuning minimum variance control in the two tuypes of k-incremental and integrating form. Since the objective of control design in this paper is a generalized minimum variance control, it can be applied to nonminimum phase system. And we compare the proposed algorithm wiht that of the positional self-tuning control and show that it can also be applied to nonminimum phase system by computer simulation.

  • PDF

일반화최소분산 적응제어를 이용한 유압 서보계의 특성개선에 관한 연구 (Characteristics Improvement of Hydraulic Servosystem by Using Generalized Minimum Variance Adaptive Control)

  • 박용호;김기홍;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.388-394
    • /
    • 2003
  • Hydraulic system is difficult to obtain a suitable performance due to the nonlinearity load pressure change and system parameter variation. The requirement of control a1gorithm has been complex in order to satisfy the performance. The adaptive control is a control method which is suggested to achieve the control object under the plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp. the adaptive control could keep the characteristics of closed-loop system generally. In this study. a method of combined generalized minimum variance adaptive control (GMVAC) and output error feedback is proposed, in order to solve the problem of non-minimum phase of plant and the vibration and overshoot in initial response. The control performance according to the variation of characteristics of plant is evaluated by changing the supply pressure. The experimental results show the effectiveness of the proposed scheme.

최소분산 자기동조 PID제어기 (A self tuning PID controller with minimum variance)

  • 조원철;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.14-20
    • /
    • 1996
  • This paper presents a self tuning method of a velocity type PID controller for minimum or non-minimum phase systems with time delays. The velocity type PID control structure is determined in the process of minimizing the variance of the auxilliary output, and self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a design parameter. This method is simple and effective compared with other existing methods[1,2]. Numerical examples are included to illustrate the procedure and to show the performance of the control system.

  • PDF

적응제어를 이용한 유압 액츄에이터의 특성개선에 관한 연구 (A Study on the Characteristics Improvement of Fluid Power Actuator Using Adaptive Control)

  • 염만오;윤일로
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.124-132
    • /
    • 2004
  • A hydraulic system is difficult to keep the performance due to non-linearity, load pressure which changes according to working condition and system parameter variation, the requirement of control algorithm has been risen in order to satisfy them. An adaptive control is a control method which is suggested to achieve a control object though plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp, adaptive control can keep the characteristics of closed-loop system regularly. In this study GMVAC(generalized minimum variance adaptive control) combined with output error feedback is proposed in order to solve problems of non-minimum phase, vibration and overshoot in initial response of the plant. The control performance according to the variation of characteristics of the plant is evaluated by changing the supply pressure only.

유전 알고리듬을 이용한 자기동조 제어기 (A self tuning controller using genetic algorithms)

  • 조원철;김병문;이평기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.629-632
    • /
    • 1997
  • This paper presents the design method of controller which is combined Genetic Algorithms with the Generalized minimum variance self tuning controller. It is shown that the controllers adapts to changes in the system parameters with time delays and noises. The self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a polynomial parameters. The computer simulation results are presented to illustrate the procedure and to show the performance of the control system.

  • PDF

최소분산제어론을 이용한 유도전동기의 속도제어 (Speed Control of Induction Motor using Minimum Variance Control Theory)

  • 오원석;신태현
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제10권5호
    • /
    • pp.83-93
    • /
    • 1996
  • 본 연구는 부하변동이 갖은 유도 전송기 속도제어 시스템에 적합한 최소분산제어 알고리즘을 제안하고 구현을 실제적인 파라미터 추정방법을 제안한다. 그리고 고속 연산 신호처리요 프로세인 TMS 320C25를 이용한 제어 시스템을 구성한다. 적응칙은 선택적 망각인자를 갖는 순환형 최소자승법이 실제적 구현의 관점에서 언급되며, 일반적인 망각인자 알고리즘과 비교분석한다. 제어칙은 최소분산 제어 알고리즘으로 한다. 제어시스템은 알고리즘의 적용이 용이하도록 PC에 기초한 DSP제어 시스템으로 설계 제작한다. 시뮬레이션과 실험을 통하여, 본 연구의 초소분산제어 시스템이 부하변동에 강인한 구조를 갖고 있으며 유도전동기 제어에 실제적 구현이 가능함을 입증한다.

  • PDF

Optimal actuator selection for output variance constrained control

  • 김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.565-569
    • /
    • 1993
  • In this paper, a specified number of actuators are selected from a given set of admissible actuators. The selected set of actuators is likely to use minimum control energy while required output variance constraints are guaranteed to be satisfied. The actuator selection procedure is an iterative algorithm composed of two parts; an output variance constrained control and an input variance constrained control algorithm. The idea behind this algorithm is that the solution to the first control problem provides the necessary weighting matrix in the objective function of the second optimization problem, and the sensitivity information from the second problem is utilized to delete one actuator. For variance constrained control problems, by considering a dual version of each control problem an efficient algorithm is provided, whose convergence properties turn out to be better than an existing algorithm. Numerical examples with a simple beam are given for both the input/output variance constrained control problem and the actuator selection problem.

  • PDF

마찰보상을 통한 서어보제어계의 정밀 안정화 제어 (Precision Stabilization Control of Servo-system by Using Friction Compensation)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.109-115
    • /
    • 1999
  • This paper presents a stabilization control designed to improve position stabilization performance of a position servo-system(turret) mounted on a manuvering platform(vehicle). In the consideration of the motion of the platform, a dynamic model of the stabilization system is derived and shows the viscous and stick-slip friction torques are the major source of stabilization errors. An extended generalized minimum variance control which consists of a feedforward disturbance compensation as well as a pole placement feedback control is suggested to reduce the stabilization errors caused from the friction disturbances. This modeling and control are applied to a small experimental set-up and the experimental results confirm the accuracy of the model and the effectiveness of the suggested control.

  • PDF