• Title/Summary/Keyword: Minimum ignition limits

Search Result 15, Processing Time 0.03 seconds

A Study on The Ignition Limit of Flammable Gases by Discharge Spark of Resistive Circuit (저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구)

  • Lee Chun-Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.106-112
    • /
    • 1997
  • This study measured the ignition limits of methane-air, propane-air, ethylene-air, and hydrogen-air mixture gases by discharge spark of D.C. power resistive circuit. The used experimental device is the IEC type spark ignition test apparatus, it consists of explosion chamber and supply -exhaust system of mixture gas. Mixture gases (methane-air, propane-air, ethylene-air, and hydrogen-air) were put into explosion chamber of IEC type spark ignition test apparatus, then it was confirmed whether ignition was made by 3,200 times of discharge spark between tungsten electrode and cadmium electrode. The ignition limits were found by increasing or decreasing the value of current. For the exact experiment, the ignition sensitivity was calibrated before and after the experiment in each condition. The ignition limits were found by changing the value of concentration of each gas-air mixture in D.C. 24 [V] resistive circuit. As the result of experiment, it was found that the minimum ignition limit currents exist at the value of methane-air 8.3 [$Vol\%$], propane-air 5.25[$Vol\%$], ethylene-air 7.8 [$Vol\%$], and hydrogen-air 21[$Vol\%$] mixture gases. For each the minimum ignition concentration of gases, the relationships between voltage and minimum ignition current were found. The results are as follows. - The minimum ignition limits are decreasing in the order of methane, propane, ethylene, and hydrogen. - The value of ignition current is inversely proportional to the value of source voltage. - The minimum ignition limit currents increase sharply at more than 2 [A]. The reason is caused by overheating the electrode.

  • PDF

A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas (저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • This paper describes the minimum ignition limits for propane-air 5.25 Vol.% mixture gases in low voltage inductive circiuts. The improved effects on the ignition limit are studied by parallel safety components(resistors) for propane-air 5.25 Vol.% mixture gas in low voltage inductive circuits. The experimental devices used in this test are the IEC type spark ignition test apparatus. The minimum ignition limits are controlled by the values of current in inductive circuit. Energy supplied from electric source is first accumulated at the inductance, it's extra energy is working as ignition source of the explosive gas. The improved effects on the ignition limit are respectively obtained as the maximum rising rate of 330% by composing parallel circuits between inductance and resistor as compared with disconnecting inductance with the safety components. The more values of inductance increase the higher improved effects of ignition limit rise. The less values of resistor the higher improved effects of ignition limit rise. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof machines which are applied equipment and detectors used in dangerous areas but also for datum for its equipment tests.

A Study on Estimation of Lower Explosive Limits of Alcohol Compounds (알코올화합물의 폭발하한계 추산에 관한 연구)

  • Dong-Myeong Ha;Yong-Chan Choi;Haejin Oh;Su-kyung Lee
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.291-296
    • /
    • 2002
  • Flammable compounds are indispensible in domestic as well as in industrial fields as fuel, solvent and raw materials. The fire and explosion properties necessary for safe storage, transport, process design and operation of handling flammable substances are lower explosive limits(LEL), upper explosive limits(UEL), flash point, fire point, AIT(auto ignition temperature), MIE(minimum ignition energy), MOC(minimum oxygen concentration) and heats of combustion.

  • PDF

A Study on the Minimnum Ignition Limit for LPG-Air Mixtures by Switching Sparks in Radio-frequency Circuits (고주파 전기회로의 개폐불꽃에 의한 LPG-공기 혼합가스의 점화한계에 관한 연구)

  • Jee, S.W.;Song, H.J.;Lee, C.H.;Park, W.Z.;Lee, K.S.;Lee, D.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1854-1856
    • /
    • 1996
  • This study describes the minimum ignition limit for LPG-Ai-r mixtures by switching sparks in radio-frequency limits using RF power supply and IEC type ignition spark apparatus. As a result, the minimum ignition limit voltage is increased in proportional to the rate of increasing of frequency in LPG-Air mixed gas. Especially, increment between 10[kHz] and 30[kHz] is typical. It is considered that ignition is caused by one discharge until 10 [kHz] and, beyond 10[kHz] ignition is caused by more than two discharges. The reason is analysed that energy loss is caused by existing pause interval between discharges.

  • PDF

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

A Study on the Minimum Ignition Limit Voltages for LPG-Air Mixtures by Discharge Sparks in Radio-frequency Circuits (고주파 전기회로의 개폐불꽃에 의한 LPG-공기 혼합가스의 최소점화한계전압에 관한 연구)

  • Lee Chun-ha;Kim Jae-ouk;Jee Sung-ouk;Song Hun-jik;Lee Gang-sik;Lee Dong-in
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.79-84
    • /
    • 1998
  • This paper describes the minimum ignition limit voltages for LPG-Air 5.25[Vol$\%$] mixture gas by discharge sparks in radio-frequency limits using RF power supply and IEC type ignition spark apparatus. As a result, the minimum ignition limit voltages is increased in proportional to the rate of increasing of frequency in LPG-Air mixture gas. Especially, the minimum ignition limit voltages increase remarkably between 3[KHz] and 10[KHz]. It is considered that ignition is caused by one discharge until 3[KHz] and, beyond 3[KHz] ignitiof is caused by more than two discharges. The reason is analyzed that energy loss is caused by existing pause interval between discharges. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof RF machines which are applied tole-equipments and detectors used in dangerous areas but also for datum for its equipment tests.

  • PDF

Investigation of Combustible Characteristics for Risk Assessment of Benzene (벤젠의 위험성 평가를 위한 연소 특성치 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.28-33
    • /
    • 2009
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosion limit, flash point, autoignition temperatures(AITs), minimum oxygen concentration(MOC), heat of combustion etc.. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of benzene, lower explosion limit(LEL) at $25^{\circ}C$, the temperature dependence of the explosion limits and flash point were investigated. And the AITs for benzene were experimented. By using the literatures data, the lower and upper explosion limits of benzene recommended 1.3 vol% and 8.0 vol%, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for benzene, and the experimental AIT of benzene was $583^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of benzene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

An Ignition Characteristics of Slinger Combustor at High Altitude Condition (고고도 조건에서 슬링거 연소기의 점화특성 연구)

  • Lee Kang-Yeop;Lee Dong-Hun;Park Young-Il;Kim Hyung-Mo;Park Poo-Min;Lee Kyung-Jae;Choi Ho-Jin;Chang Hyun-Soo;Choi Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.309-312
    • /
    • 2005
  • High altitude ignition test was performed to understand high altitude ignition characteristics of slinger combustor. To verify ignition limits, test was carried out with variation of altitude and fuel nozzle rotational speed using AETF(Altitude Engine Test Facility) in KARI(Korea Aerospace Research Institute). From the result, the effect of major factors which affect on ignition characteristics was observed. The reduction of ignition limit with increasing altitude and expansion of ignition limit with increasing rotational speed of fuel nozzle was verified. Also minimum rotational speed of fuel nozzle at high altitude must be greater than that of seal level condition.

  • PDF

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • In order to see flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65 m/s.

A Study of Flame Visualization of the APU Gas Turbine Engine Sector Combustor (APU용 가스터빈 엔진 분할연소기의 화염가시화 연구)

  • Kim, Bo-Ra-Mi;Choi, Chea-Hong;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.153-159
    • /
    • 2010
  • In order to see the flame behavior in the annular reverse gas turbine combustor, sector combustion test was performed. Ignition test by using torch ignition system was carried out at the various combustor inlet velocity and air fuel ratio. Also, flame blow out limit was measured by changing fuel flow rate with constant air mass flow rate. In the test results, stable ignition is possible at air excess ratio of 6 and this limit is gradually increased with combustor inlet velocity. The minimum blow out limit is about 4 at 40 m/s of combustor inlet velocity. This blow out limit is also increased up to about 10 with increasing combustor inlet velocity. Test result shows that lean blow out limits are increased with air velocity. The highest blow out limit was found at the combustor inlet velocity of 65m/s.

  • PDF