• Title/Summary/Keyword: Minimum descent altitude

Search Result 2, Processing Time 0.016 seconds

A Study on the Approach Methods with a Constant Vertical Speed for Diminution of CFIT Accidents in Non-Precision Approach (비정밀접근시 CFIT사고 방지를 위한 일정강하율 접근방식에 관한 연구)

  • Song, B.H.;Sin, H.S.;Moon, K.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.4
    • /
    • pp.43-57
    • /
    • 2005
  • Traditionally aircraft had descended in steps to level at the MDA(Minimum Descent Altitude) during the conduct of non-precision approach. This "de-stabilized" method of flying an instrument approach procedure is considered as a major contributing factor in CFIT(Controlled Flight Into Terrain) accident and increasing pilot workload. In the effort to reduce CFIT accident and pilot workload, VNAV(Vertical Navigation) Approach has been suggested as means to manage the vertical component of non-precision approach procedure.[1] But In the actual circumstances in Korea, VNAV has not been using to reduce them because of many restriction facts and no published VNAV chart in particular airport. Therefore we are suggesting Constant Vertical Speed Approach Method, which is required few restriction facts, and the pilots who are using this method will experience a similar method like a Glideslope during proceeding non-precision approach. Consequently, We are expecting to reduce CFIT accidents and pilot workload.

  • PDF

Comparative Analysis of Circling Approach Procedure Design Standards Applied to Domestic Airports (국내 공항에 적용된 선회접근 절차 설계기준의 비교 분석)

  • Dong-kwan Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.272-277
    • /
    • 2024
  • In most countries, instrument flight procedures are designed by applying one of the following standards: the International Aviation Organization's DOC 8168, Air Navigation Services and Operation Procedures (PANS-OPS), or the US Federal Aviation Administration's TERPS, Terminal Procedures. In particular, the circling approach procedure has many differences between the two standards, and the US terminal procedure (TERPS) has become more complicated since 2013 by applying expanded standards depending on altitude. The circling approach procedures are more risky than straight-in approach procedures because it involves maneuvering the aircraft close to the ground at low energy for landing. In order to accurately understand these differences, this study provides to distinguish by what criteria the circling approach procedure is designed according to individual domestic airports in Korea, to calculate the radius for the range of circling approach areas that guarantee minimum obstacle avoidance during circling approach maneuvers, and to present methods for performing safe circling approach procedures.