• Title/Summary/Keyword: Minimum audible frequency

Search Result 6, Processing Time 0.022 seconds

A Study on the healing factors of Forest Sound

  • Yi, Eun-Young;Bae, Myung-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.70-77
    • /
    • 2017
  • Where there are all the flowers, the songs of all kinds of insects and birds are put in, the sunshine and shadows flicker The forest through which the water sound flows is an optimum resting space. All living creatures in these spaces will awaken the five senses of humans and perhaps turn the sensibility index (EQ). The forest meditation in the forest, which can be an optimal shelter for the people who need it, needs to feel the reverence of nature, to refine emotions, to be a self-reflection, to have a mind to respect, Have an important meaning. In this paper, we tried to consider the cause of the influence of forest sounds on human hearing from the acoustical aspect. The type of sound source of forest was divided into four seasons of spring, summer, autumn, winter. And the change in the duration of the sound during the four seasons, so that the general characteristics of the sounds of the four seasons are as follows: It can be seen that the change in the ratio of sub-band energy is almost equal to the change in dB in frequency of the equal-light curve. To compare this phenomenon, the criterion for changing the sound duration of each forest is natural The main forms of the luminance curve, such as the change in the duration of the white signal in the sound, are determined by the minimum, maximum audible frequency and the most sensitive frequency band, and the auditory characteristics of the other three inflection points Determines the overall shape of the equal-light curve.

Characteristics of Echolocation Calls of the Parti-coloured Bat, Vespertilio sinensis, in Relation to Environment Type (환경특성에 따른 안주애기박쥐(Vespertilio sinensis)의 반향정위 특징)

  • Chung, Chul-Un;Han, Sang-Hoon
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.353-358
    • /
    • 2015
  • In this study, we analyzed two types of echolocation calls used by the parti-coloured bat, Vespertilio sinensis. Bats were captured in the Naejangsan National Park in October 2013. Call sounds of hand-released bats were recorded at the location of capture within the National Park. We analyzed pulse duration (PD), pulse interval (PI), peak frequency (PF), maximum frequency ($F_{MAX}$), minimum frequency ($F_{MIN}$), and bandwidth (BW). V. sinensis emitted the different types of the echolocation calls depending on the surrounding environment. Frequency modulated-constant frequency (FM-CF) signal of audible range was emitted when they flew in the uncluttered space over the canopy. However, when flying in the cluttered space below the canopy, they only emitted FM signal. FM-CF signal is in the audible range (e.g., low frequency), and FM signal has a harmonic broadband frequency range of two. There were significant differences in PD, PI, PF, FMAX, FMIN, and BW between the calls emitted over and below the canopy. Considering the functional characteristics of FM and CF signals, we conclude that the foraging activity of V. sinensis was observed below the canopy, and recommend the use of FM signal and broadband as echolocation signals.

Auditory Characteristics of Tiger shark Scyliorhinus torazame caught in the Coast of jeju Island (제주 연안에서 어획된 두툽상어의 청각 특성)

  • Ahn, Jang-Young;Choi, Chan-Moon;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.234-240
    • /
    • 2011
  • In order to obtain the fundamental data about the behavior of sharks by underwater audible sound, this experiment was carried out to investigate the auditory characteristics of tiger shark Scyliorhinus torazame which was caught in the coast of Jeju Island by heart rate conditioning method using pure tones coupled with a delayed electric shock. The audible range of tiger shark extended from 80Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity at 300Hz. The mean auditory thresholds of tiger shark at the frequencies of 80Hz, 100Hz, 200Hz and 300Hz were 90dB, 103dB, 94dB and 115dB, respectively. The positive response of tiger shark was not evident after the sound projection of over 300Hz. At the results, the sensitive frequency range of tiger shark is narrower than that of fish that has swim bladder. In addition, it is assumed that the most sensitive frequency in auditory thresholds of Chondrichthyes is lower than that of Osteichthyes. Critical ratios of tiger shark measured in the presence of masking noise in the spectrum level range of about 60-70dB (0dB re $1{\mu}Pa/\sqrt{Hz}$) increased from minimum 27dB to maximum 39dB at test frequencies of 80-200Hz. The noise spectrum level at the start of masking was distributed at the range of about 65dB within 80-200Hz.

Hearing Ability of Conger eel Conger myriaster caught in the Coast of jeju Island (제주 연안에서 어획된 붕장어의 청각 능력)

  • Ahn, Jang-Young;Park, Yong-Seok;Choi, Chan-Moon;Kim, Seok-Jong;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.479-486
    • /
    • 2012
  • In order to obtain the fundamental data about the behavior of conger by underwater audible sound, this experiment was carried out to investigate the hearing ability of Conger eel Conger myriaster which was in the coast of Jeju Island by heartbeat conditioning method using pure tones coupled with a delayed electric shock. The audible range of conger eel extended from 50Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity over 200Hz. The mean auditory thresholds of conger eel at the frequencies of 50Hz, 80Hz, 100Hz, 200Hz and 300Hz were 105dB, 92dB, 96dB, 128dB and 140dB, respectively. The positive response of conger eel was not evident after the sound projection of over 200Hz. At the results, the sensitive frequency range of conger eel is narrow in spite of swim bladder. Auditory masking was determined for Conger eel by using masking stimuli with the spectrum level range of about 60~70dB (0dB re $1{\mu}Pa/\sqrt{Hz}$). According to white noise level, the auditory thresholds increased as compared with thresholds in a quiet background noise including critical ratio at 68dB of white noise from minimum 26dB to maximum 30dB at test frequencies of 80Hz and 100Hz. The noise spectrum level at the start of masking was distributed at the range of about 68dB within 80~100Hz.

An Analysis of Phonetic Parameters for Individual Speakers (개별화자 음성의 특징 파라미터 분석)

  • Ko, Do-Heung
    • Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.177-189
    • /
    • 2000
  • This paper investigates how individual speakers' speech can be distinguished using acoustic parameters such as amplitude, pitch, and formant frequencies. Word samples from fifteen male speakers in their 20's in three different regions were recorded in two different modes (i.e., casual and clear speech) in quiet settings, and were analyzed with a Praat macro scrip. In order to determine individual speakers' acoustical values, the total duration of voicing segments was measured in five different timepoints. Results showed that a high correlation coefficient between $F_1\;and\;F_2$ in formant frequency was found among the speakers although there was little correlation coefficient between amplitude and pitch. Statistical grouping shows that individual speakers' voices were not reflected in regional dialects for both casual and clear speech. In addition, the difference of maximum and minimum in amplitude was about 10 dB which indicates a perceptually audible degree. These acoustic data can give some meaningful guidelines for implementing algorithms of speaker identification and speaker verification.

  • PDF

Hearing Ability of Redlip croaker Pseudosciaena polyactis cultured in the Coastal Sea of Jeju (제주 연안에서 양식된 참조기의 청각 능력)

  • AHN, Jang-Young;KIM, Seok-Jong;CHOI, Chan-Moon;PARK, Young-Seok;LEE, Chang-Heon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.384-390
    • /
    • 2016
  • The purpose of this paper is to improve the availability of underwater sound by the fundamental data on the hearing ability of Redlip croaker Pseudosciaena polyactis, which is cultured according to the cultivation technology, recently. The auditory thresholds of Redlip croaker were determined at 6 frequencies from 80Hz to 800Hz by heartbeat conditioning method using pure tones coupled with a delayed electric shock. The audible range of the Redlip croaker extended from 80Hz to 800Hz with the best sensitive frequency range including little difference in hearing ability from 80Hz to 500Hz. In addition, the auditory thresholds over 800Hz increased rapidly. The mean auditory thresholds of the Redlip croaker at the test frequencies from 80Hz to 800Hz were 90.7dB, 93.4dB, 92.9dB, 94.4dB, 95.5dB and 108dB, respectively. Auditory masking for the redlip croaker was measured using masking stimuli with the spectrum level range of about 66, 71, 75dB (0dB re $1{\mu}Pa/{\sqrt{Hz}}$). According to white noise level, the auditory thresholds increased as compared with thresholds in a quiet background noise. The Auditory masking by the white noise spectrum level was stared over about 70dB within 80~500Hz. Critical ratio ranged from minimum 20.7dB to maximum 25.5dB at test frequencies of 80Hz~500Hz.