• Title/Summary/Keyword: Minimum Cutset

Search Result 3, Processing Time 0.014 seconds

A Segment-based Minimum Cutset Method for Estimating the Reliability of Water Distribution Systems (상수관망의 신뢰도 산정을 위한 Segment 기반의 Minimum Cutset 방법)

  • Jun, Hwan-Don;Park, Jae-Il;Baek, Chun-Woo;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.735-742
    • /
    • 2007
  • In this study, a methodology which is based on segments and minimum outsets to estimate the reliability of a real water distribution system efficiently and accurately is suggested. The current reliability assessment models based on minimum cutset consider a pipe as only area impacted by a pipe failure which incurs underestimation of pipe failure impact. In contrary, the suggested methodology adopts "segment" and "unintended isolation" with the hydraulic pressure failure area to define the actual service interruption area in a water distribution system due to a pipe failure, which is different from the Previous reliability estimating methodologies. In addition, a minimum cutset is defined as a single segment incurring abnormal operating conditions and the success mode approach is used to account for the probability of multiple failure combinations of minimum outsets. The model considers numbers and locations of on-off valves when the service interruption area is defined. Once the methodology is applied to a real water distribution system, it is possible to define actual service interruption areas and using the defined areas, the reliability of the water distribution system is estimated reliably, compared with the previous reliability assessment methodologies.

Evaluation of the Reliability Improvement of a Water Distribution System by Changing Pipe (상수관의 관경변화가 상수관망의 신뢰도 향상에 미치는 영향 평가)

  • Jun, Hwan-Don;Kim, Seok-Hyun;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.505-511
    • /
    • 2009
  • When replacing deteriorated pipes, it is important to select pipe diameters of new pipes for improving the long-term reliability of a water distribution system. However, as the use of larger diameter pipes brings cost increase, it is required to evaluate the improvement of the reliability by the use of larger diameter pipes. In this study, we propose a methodology to evaluate the improvement of the reliability by the use of different pipe diameters. For this purpose, we rely on the segment-based minimum cutset method with the success mode approach to evaluate the reliability of a water distribution system and determine which pipes and their diameters will be replaced to improve the reliability using GA, After the suggested method is applied to a real water distribution system, the optimized pipe diameters produces higher reliability of the system than the current ones with the same construction cost. However, compared to the increase rate of the construction cost, the improvement of the reliability is not significant. Thus, in addition to the use the different pipe diameters, the structural modification or adding new valves to the system is necessary to improve the reliability efficiently.

Development of a Method to Reduce Damages by Pipe Failures (상수관 파괴에 의한 피해 경감기법의 개발)

  • Jun, Hwan-Don;Kim, Seok-Hyeon;Park, Moo-Jong;Kim, Joong-Hoon;Lee, Hwan-Goo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.31-36
    • /
    • 2008
  • A water distribution system should be constructed reasonably to supply water for the customer with proper quality and pressure as demands at nodes fluctuate with time. Also it should be reliable to minimize undesirable effects on the customer when various accidents happen such as pipe failures. A new method is presented here to reduce damages by pipe failures. For the work, two methods, namely, the method for estimating practical extent of damage by pipe failures and for estimating water distribution reliability, are adopted to analyze a water distribution system and to explore the damage reduction by pipe failures. As the results from the analysis of the model, the damage can be reduced effectively by increasing durability of each pipe in minimum cutsets according to the order of priority. The suggested method was applied to the Cherry-Hill network to verify its applicability.