• Title/Summary/Keyword: Minimal model

Search Result 645, Processing Time 0.023 seconds

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.

[Retraction] Characteristics and Optimization of Platycodon grandiflorum Root Concentrate Stick Products with Fermented Platycodon grandiflorum Root Extracts by Lactic Acid Bacteria ([논문 철회] 반응표면분석법을 이용한 젖산발효 도라지 추출물이 첨가된 도라지 농축액 제품의 최적화 연구)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Park, Shin Young;Mun, Jung Sik;Kil, Mi Ja;Doh, Eun Soo;Kim, Hyun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1386-1396
    • /
    • 2017
  • The purpose of this study was to determine the optimum Platycodon grandiflorum root concentrate (PGRC, $65^{\circ}Brix$), fermented P. grandiflorum root extract by Lactobacillus plantarum (FPGRE, $2^{\circ}Brix$), and cactus Chounnyouncho extract (Cactus-E, $2^{\circ}Brix$) for preparation of PGRC stick product with FPGRE using response surface methodology (RSM). The experimental conditions were designed according to a central composite design with 20 experimental points, including three replicates for three independent variables such as amount of PGRC (8~12 g), FPGRE (0~20 g), and Cactus-E (0~20 g). The experimental data for the sensory evaluation and functional properties based on antioxidant activity and antimicrobial activity were fitted with the quadratic model, and accuracy of equations was analyzed by ANOVA. For the responses, sensory and functional properties showed significant correlation with contents of three independent variables. The results indicate that addition of PGRC contributed to increased bitterness and acridity based on the sensory test and antimicrobial activity, addition of FPGRE contributed to increased antioxidant activity and antimicrobial activity, and addition of Cactus-E contributed to increased fluidity based on the sensory test, antioxidant activity, and antimicrobial activity. Based on the results of RSM, the optimum formulation of PGRC stick product was calculated as PGRC 8.456 g, FPGRE 20.00 g, and Cactus-Ex 20.00 g with minimal bitterness and acridity, as well as optimized fluidity, antioxidant activity, and antimicrobial activity.

Cytotoxicity and Apoptosis of Various Concentrations of Doxorubicin in Methylcholanthrene- induced Rat Fibrosarcoma(MCA) Cells (Methylcholanthrene 유도 섬유육종세포주에서 Doxorubicin 농도에 따른 세포독성과 자멸사의 변화)

  • 정진용;왕영필;나석주
    • Journal of Chest Surgery
    • /
    • v.34 no.6
    • /
    • pp.447-453
    • /
    • 2001
  • Background: Although pulmonary resection is the standard approach for the management of pulmonary metastases from soft tissue sarcoma, most of them are unresectable and chemotherapy remains the only option. The effectiveness of the cytotoxic drugs may be limited by the toxicities that occur before the therapeutic dose is reached. The regional administration of doxorubicin using pulmonary arterial perfusion in a rodent model can produce 10 to 25 times higher concentrations in the lung than systemic administration with minimal systemic toxicities. However, it is unclear whether a high concentration of doxorubicin has beneficial effects for killing cancer cells. Material and Method: We studied this to evaluate the dose-dependent cytotoxic and apoptotic effects of doxorubicin on methylcholanthrene-induced rat fibrosarcoma(MCA) cells. This study examined the cytotoxicity and apoptosis-related gene expressions(Fas, FasL, Bax, caspase 1, caspase 2, caspase 8, Bcl-2, Bcl-xL, Bcl-xS) in MCA cells after 24 hours exposure to various concentrations of doxorubicin such as 1, 5, 10, 50, and 100 $\mu$M. Result: Dose-dependent cytotoxicity was observed after 24 hours exposure to doxorubicin. However, peak apoptosis after 24 hours exposure was observed at 5 $\mu$M of doxorubicin. Above 5 $\mu$M, apoptotic activity was decreased with dose-increment. All mRNA levels of apoptosis-related genes after 24 hours exposure were up-regulated above the control level at 1 $\mu$M of doxorubicin and then decreased by doxorubicin dose-increment except caspase 8, which showed higher levels than the control level at 5 $\mu$M. Apoptosis-related protein levels were highest at 1 $\mu$M of doxorubicin and then decreased by doxorubicin dose-increment. However, Bax and Bcl-xL proteins steadily showed higher levels than the control throughout the different concentrations of doxorubicin. Conclusion: These results suggest that apoptosis is the main cytotoxic mechanism in low concentrations of doxorubicin in MCA cells and apoptosis-related genes, such as Bax, caspase 8, and Bcl-xL, are involved. At high concentrations, doxorubicin still can kill MCA cells, even when apoptosis is inhibited, and have its propriety for achieving much cytotoxicity against MCA cells.

  • PDF

Application of Environmental Friendly Bio-adsorbent based on a Plant Root for Copper Recovery Compared to the Synthetic Resin (구리 회수를 위한 식물뿌리 기반 친환경 바이오 흡착제의 적용 - 합성수지와의 비교)

  • Bawkar, Shilpa K.;Jha, Manis K.;Choubey, Pankaj K.;Parween, Rukshana;Panda, Rekha;Singh, Pramod K.;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.56-65
    • /
    • 2022
  • Copper is one of the non-ferrous metals used in the electrical/electronic manufacturing industries due to its superior properties particularly the high conductivity and less resistivity. The effluent generated from the surface finishing process of these industries contains higher copper content which gets discharged in to water bodies directly or indirectly. This causes severe environmental pollution and also results in loss of an important valuable metal. To overcome this issue, continuous R & D activities are going on across the globe in adsorption area with the purpose of finding an efficient, low cost and ecofriendly adsorbent. In view of the above, present investigation was made to compare the performance of a plant root (Datura root powder) as a bio-adsorbent to that of the synthetic one (Tulsion T-42) for copper adsorption from such effluent. Experiments were carried out in batch studies to optimize parameters such as adsorbent dose, contact time, pH, feed concentration, etc. Results of the batch experiments indicate that 0.2 g of Datura root powder and 0.1 g of Tulsion T-42 showed 95% copper adsorption from an initial feed/solution of 100 ppm Cu at pH 4 in contact time of 15 and 30 min, respectively. Adsorption data for both the adsorbents were fitted well to the Freundlich isotherm. Experimental results were also validated with the kinetic model, which showed that the adsorption of copper followed pseudo-second order rate expression for the both adsorbents. Overall result demonstrates that the bio-adsorbent tested has a potential applicability for metal recovery from the waste solutions/effluents of metal finishing units. In view of the requirements of commercial viability and minimal environmental damage there from, Datura root powder being an effective material for metal uptake, may prove to be a feasible adsorbent for copper recovery after the necessary scale-up studies.

Small Animal PET Imaging with [$^{124}I$]FIAU for Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression in a Hepatoma Model (간암 동물 모델에서 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-[$^{124}I$iodo-uracil ($[^{124}I]FIAU$) 소동물 PET 영상 연구)

  • Chae, Min-Jeong;Lee, Tae-Sup;Kim, June-Youp;Woo, Gwang-Sun;Jumg, Wee-Sup;Chun, Kwon-Soo;Kim, Jae-Hong;Lee, Ji-Sup;Ryu, Jin-Sook;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.3
    • /
    • pp.235-245
    • /
    • 2008
  • Purpose: The HSV1-tk gene has been extensively studied as a type of reporter gene. In hepatocellular carcinoma (HCC), only a small proportion of patients are eligible for surgical resection and there is limitation in palliative options. Therefore, there is a need for the development of new treatment modalities and gene therapy is a leading candidate. In the present study, we investigated the usefulness of substrate, 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabino-furanosyi-5-[$^{124/125}I$]iodo- uracil ([$I^{124/125}I$]FIAU) as a non-invasive imaging agent for HSV1-tk gene therapy in hepatoma model using small animal PET. Material and Methods: With the Morris hepatoma MCA cell line and MCA-tk cell line which was transduced with the HSV1-tk gene, in vitro uptake and correlation study between [$^{125}I$]FIAU uptake according to increasing numeric count of percentage of MCA-tk cell were performed. The biodistribution data and small animal PET images with [$^{124}I$]FIAU were obtained with Balb/c-nude mice bearing both MCA and MCA-tk tumors. Results:, Specific accumulation of [[$^{125}I$]FIAU was observed in MCA-tk cells but uptake was low in MCA cells. Uptake in MCA-tk cells was 15 times higher than that of MCA cells at 480 min. [$^{125}I$]FIAU uptake was linearly correlated (R2 =0.964, p =0.01) with increasing percentage of MCA-tk numeric cell count. Biodistribution results showed that [$^{125}I$]FIAU was mainly excreted via the renal system in the early phase. Ratios of MCA-tk tumor to blood acting were 10, 41, and 641 at 1 h, 4 h, and 24 h post-injection, respectively. The maximum ratio of MCA-tk to MCA tumor was 192.7 at 24 h. Ratios of MCA-tk tumor to liver were 13.8, 66.8, and 588.3 at 1 h, 4 h, and 24 h, respectively. On small animal PET, [$^{124}I$]FIAU accumulated in substantial higher levels in MCA-tk tumor and liver than MCA tumor. Conclusion: FIAU shows selective accumulation to HSV1-tk expressing hepatoma cell tumors with minimal uptake in normal liver. Therefore, radiolabelled FIAU is expected to be a useful substrate for non-invasive imaging of HSV1-tk gene therapy and therapeutic response monitoring of HCC.