• Title/Summary/Keyword: Minimal Resources

Search Result 222, Processing Time 0.047 seconds

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

NetDraino: Saving Network Resources via Selective Packet Drops

  • Lee, Jin-Kuk;Shin, Kang-G.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-55
    • /
    • 2007
  • Contemporary end-servers and network-routers rely on traffic shaping to deal with server overload and network congestion. Although such traffic shaping provides a means to mitigate the effects of server overload and network congestion, the lack of cooperation between end-servers and network-routers results in waste of network resources. To remedy this problem, we design, implement, and evaluate NetDraino, a novel mechanism that extends the existing queue-management schemes at routers to exploit the link congestion information at downstream end-servers. Specifically, NetDraino distributes the servers' traffic-shaping rules to the congested routers. The routers can then selectively discard those packets-as early as possible-that overloaded downstream servers will eventually drop, thus saving network resources for forwarding in-transit packets destined for non-overloaded servers. The functionality necessary for servers to distribute these filtering rules to routers is implemented within the Linux iptables and iproute2 architectures. Both of our simulation and experimentation results show that NetDraino significantly improves the overall network throughput with minimal overhead.

Deep Borehole Disposal of Nuclear Wastes: Opportunities and Challenges

  • Schwartz, Franklin W.;Kim, Yongje;Chae, Byung-Gon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.301-312
    • /
    • 2017
  • The concept of deep borehole disposal (DBD) for high-level nuclear wastes has been around for about 40 years. Now, the Department of Energy (DOE) in the United States (U.S.) is re-examining this concept through recent studies at Sandia National Laboratory and a field test. With DBD, nuclear waste will be emplaced in boreholes at depths of 3 to 5 km in crystalline basement rocks. Thinking is that these settings will provide nearly intact rock and fluid density stratification, which together should act as a robust geologic barrier, requiring only minimal performance from the engineered components. The Nuclear Waste Technical Review Board (NWTRB) has raised concerns that the deep subsurface is more complicated, leading to science, engineering, and safety issues. However, given time and resources, DBD will evolve substantially in the ability to drill deep holes and make measurements there. A leap forward in technology for drilling could lead to other exciting geological applications. Possible innovations might include deep robotic mining, deep energy production, or crustal sequestration of $CO_2$, and new ideas for nuclear waste disposal. Novel technologies could be explored by Korean geologists through simple proof-of-concept experiments and technology demonstrations.

Isolation of Antimicrobial Substances from Hericium erinaceum

  • Kim, Dong-Myong;Pyun, Chul-Woo;Ko, Han-Gyu;Park, Won-Mok
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • Mycelium of Hericium erinaceum isolate KU-1 was cultured in liquid medium (HL medium) and solid medium (Ko medium) at pH 4.0 in $28^{\circ}C$. 1.0% glucose or fructose was the most favorable carbon source, and 0.2% amonium acetate or $NaNO_3$ was an exellent nitrogen source for mycelial growth as well as production of antimicrobial substances. The mixture of saw dust 70% with rice bran 30% (SR medium) was the substrate for formation of sporophores. The active substrates in extracts from mycelium, culture filtrate and fruiting body were separated by TLC. The solvent for TLC was EtOAc: Chloroform: MeOH (10 : 5 : 10). Phenol-like substances appeared at Rf $0.5{\sim}0.9$, and fatty acid-like substances appeared at Rf $0.1{\sim}0.2$. The purified materials from the extracts showed antimicrobial effects to Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Aspergillus niger, Candida albicans and Microsporum gypseum. The S. aureus was the most inhibited. Minimal inhibitory concentration (MIC) of purified white powder and the Hercenone derivatives against S. aureus were $5.65\;{\mu}g/ml$ and $1.85\;{\mu}g/ml$, respectively.

  • PDF

Rapid and Sensitive Detection of Lettuce Necrotic Yellows Virus and Cucumber Mosaic Virus Infecting Lettuce (Lactuca sativa L.) by Reverse Transcription Loop-Mediated Isothermal Amplification

  • Zhang, Yubao;Xie, Zhongkui;Fletcher, John D;Wang, Yajun;Wang, Ruoyu;Guo, Zhihong;He, Yuhui
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.76-86
    • /
    • 2020
  • Cucumber mosaic virus (CMV) is damaging to the growth and quality of lettuce crops in Lanzhou, China. Recently, however, for the first time an isolate of lettuce necrotic yellows virus (LNYV) has been detected in lettuce crops in China, and there is concern that this virus may also pose a threat to lettuce production in China. Consequently, there is a need to develop a rapid and efficient detection method to accurately identify LNYV and CMV infections and help limit their spread. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed to detect the nucleoprotein (N) and coat protein (CP) genes of LNYV and CMV, respectively. RT-LAMP amplification products were visually assessed in reaction tubes separately using green fluorescence and gel electrophoresis. The assays successfully detected both viruses in infected plants without cross reactivity recorded from either CMV or LNYV or four other related plant viruses. Optimum LAMP reactions were conducted in betaine-free media with 6 mM Mg2+ at 65℃ for LNYV and 60℃ for 60 min for CMV, respectively. The detection limit was 3.5 pg/ml and 20 fg/ml using RT-LAMP for LNYV and CMV plasmids, respectively. Detection sensitivity for both RT-LAMP assays was greater by a factor of 100 compared to the conventional reverse transcription polymerase chain reaction assays. This rapid, specific, and sensitive technique should be more widely applied due to its low cost and minimal equipment requirements.

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao;Yu, Shiqiang;Song, Ting;He, Tingting;Shao, Huanhuan;Wang, Haiyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1993-2005
    • /
    • 2016
  • Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

Study of an In-order SMT Architecture and Grouping Schemes

  • Moon, Byung-In;Kim, Moon-Gyung;Hong, In-Pyo;Kim, Ki-Chang;Lee, Yong-Surk
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.339-350
    • /
    • 2003
  • In this paper, we propose a simultaneous multithreading (SMT) architecture that improves instruction throughput by exploiting instruction level parallelism (ILP) and thread level parallelism (TLP). The proposed architecture issues and completes instructions belonging to the same thread in exact program order. The issue and completion policy greatly reduces the design complexity and hardware cost of our architecture, compared with others that employ out-of-order issue and completion. On the other hand, when the instructions belong to different threads, the issue and completion orders for those instructions may not necessarily be identical to the fetch order. The processor issues instructions simultaneously from multiple threads to functional units by exploiting ILP and TLP, and by dynamic resource sharing. That parallel execution notably improves performance and resource utilization with minimal additional hardware cost over the conventional superscalar processors. This paper proposes an SMT architecture with grouping as well as one without grouping. Without grouping, all threads dynamically and flexibly share most resources. On the other hand, in the SMT architecture with grouping, in which resources and threads are divided into several groups for design simplification, resources are shared only among threads belonging to the same group as those resources. Simulation results show that our processors with four and eight threads improve performance by three or more times over the conventional superscalar processor with comparable execution resources and policies, and that reasonable grouping reduces the design complexity of SMT processors with little negative effect on performance.

Selection and Characterization of Staphylococcus hominis subsp. hominis WiKim0113 Isolated from Kimchi as a Starter Culture for the Production of Natural Pre-converted Nitrite

  • Hwang, Hyelyeon;Lee, Ho Jae;Lee, Mi-Ai;Sohn, Hyejin;Chang, You Hyun;Han, Sung Gu;Jeong, Jong Youn;Lee, Sung Ho;Hong, Sung Wook
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.512-526
    • /
    • 2020
  • Synthetic nitrite is considered an undesirable preservative for meat products; thus, controlling synthetic nitrite concentrations is important from the standpoint of food safety. We investigated 1,000 species of microorganisms from various kimchi preparations for their potential use as a starter culture for the production of nitrites. We used 16S rRNA gene sequence analysis to select a starter culture with excellent nitrite and nitric oxide productivity, which we subsequently identified as Staphylococcus hominis subspecies hominis WiKim0113. That starter culture was grown in NaCl (up to 9%; w/v) at 10℃-40℃; its optimum growth was observed at 30℃ at pH 4.0-10.0. It exhibited nonproteolytic activity and antibacterial activity against Clostridium perfringens, a bacterium that causes food poisoning symptoms. Analysis of Staphylococcus hominis subspecies hominis WiKim0113 with an API ZYM system did not reveal the presence of β-glucuronidase, and tests of the starter culture on 5% (v/v) sheep blood agar showed no hemolytic activity. Our results demonstrated the remarkable stability of coagulase-negative Staphylococcus hominis subspecies hominis WiKim0113, especially in strain negative for staphylococcal enterotoxins and sensitive to clinically relevant antibiotics. Moreover, Staphylococcus hominis subspecies hominis WiKim0113 exhibited a 45.5% conversion rate of nitrate to nitrite, with nitrate levels reduced to 25% after 36 h of culturing in the minimal medium supplemented with nitrate (200 ppm). The results clearly demonstrated the safety and utility of Staphylococcus hominis subspecies hominis WiKim0113, and therefore its suitability as a starter culture.

Evaluation of antimicrobial activity and total phenolic content of three Pinus species

  • Kim, Hyeusoo;Lee, Byongsoon;Yun, Kyeong Won
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • This study compared the antimicrobial activity and total phenolic content of three Pinus plants (Pinus densiflora, P. thunbergii, P. rigida) for the first time. The antimicrobial activity of the water fraction of methanol extract of fresh leaves was stronger than that of fallen leaves at any concentrations. The water fraction of crude methanol extract from fresh leaves of P. thunbergii showed a higher growth inhibitory activity against gram-positive and gram-negative bacteria than that of P. densiflora and P. rigida. The results from the disc diffusion method followed by measurements of minimal inhibition concentration (MIC) indicate that Bacillus subtilis was the most sensitive microorganism with the lowest MIC value. The highest total phenolic content was found in fresh leaves of P. rigida and P. thunbergii. The assay showed that the fresh leaves of the three Pinus plants contained higher total phenolic content than fallen leaves of the three plants. The antimicrobial activity was related with the total phenolic content.

Sensitivity of Pseudomonas syringae to Bovine Lactoferrin Hydrolysates and Identification of a Novel Inhibitory Peptide

  • Kim, Woan-Sub;Kim, Pyeung-Hyeun;Shimazaki, Kei-ichi
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.487-493
    • /
    • 2016
  • The antimicrobial activity of bovine lactoferrin hydrolysates (bLFH) was measured against Pseudomonas strains (P. syringae and P. fluorescens) in vitro. To compare susceptibility to bLFH, minimal inhibitory concentration (MIC) values were determined using chemiluminescence assays and paper disc plate assays. Antimicrobial effect against P. fluorescens was not observed by either assay, suggesting that bLFH did not exhibit antimicrobial activity against P. fluorescens. However, a significant inhibition of P. syringae growth was observed in the presence of bLFH. The addition of bLFH in liquid or solid medium inhibited growth of P. syringae in a dose-dependent manner. Furthermore, a bLFH peptide with antimicrobial activity toward P. syringae was isolated and identified. The N-terminal amino acid sequences of thus obtained antimicrobial bLFH peptides were analyzed by a protein sequencer and were found to be Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala and Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met. The latter peptide sequence is known to be characteristic of lactoferricin. Therefore, in the present study, we identified a new antimicrobial peptide against P. syringae, present within the N-terminus and possessing the amino acid sequence of Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala.