• Title/Summary/Keyword: Minimal Inhibitory Concentration

Search Result 312, Processing Time 0.018 seconds

Fungicide Resistance of Gibberella fujikuroi Isolates Causing Rice Bakanae Disease and Their Progeny Isolates (벼키다리병균(Gibberella fujikuroi) 균주 및 교배 후대균주의 살균제에 대한 저항성)

  • Kim, Jung-Mi;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Yu, Seung-Hun;Choi, Hyo-Won
    • The Korean Journal of Mycology
    • /
    • v.38 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • A total of 25 isolates of Fusarium fujikuroi were obtained from diseased rice plants in Korea from 2006 to 2007 to assess their resistance against fungicides prochloraz and benomyl + thiram. Minimal inhibitory concentration (MIC) values of F. fujikuroi isolates were examined by agar dilution method. Most of the isolates were sensitive to the fungicides. Out of 25 isolates, six were resistant to prochloraz and three to benomyl + thiram. In addition, the isolates CF245, CF249 and CF337 showed resistant to both fungicides. The progenies ($F_1$ isolates) obtained through two different crosses between sensitive parental isolates(CF202, CF232 and CF179) and resistant parental isolate (CF337) were evaluated for their mycelial growth at different temperatures and resistance against fungicides. Mycelial growth rate of $F_1$ isolates originated from CF202 $\times$ CF232 was similar to the parental isolates. However mycelial growth rate of $F_1$ isolates originated from CF179 $\times$ CF337 was faster than their parent isolates. In case of prochloraz, distribution ratio of sensitivity(S) to resistance(R) against to the fungicide of $F_1$ isolates originated from CF202 $\times$ CF232 and CF179 $\times$ CF337 was 86 : 14 and 78 : 22, respectively. In case of benomyl+thiram, all the $F_1$ isolates originated from CF202 $\times$ CF232 were sensitive to the fungicide, however ratio of sensitivity(S) to resistance(R) against to the fungicide of $F_1$ isolates originated from CF179 $\times$ CF337 was 35 : 65.

Antibiotics Susceptability of Streptococcus pneumoniae Isolated from Single Tertiary Childrens' Hospital Since 2014 and Choice of Appropriate Empirical Antibiotics (최근 4년간 국내 단일 의료기관을 내원한 소아청소년에서 분리된 폐구균의 항생제 감수성 양상 분석)

  • Jung, Jiwon;Yoo, Ree Nar;Sung, Hungseop;Kim, Mina;Lee, Jina
    • Pediatric Infection and Vaccine
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Purpose: We investigated the distribution and antimicrobial resistance of pneumococcal isolates from hospitalized children at Asan Medical Center for recent 4 years, and aimed to recommend proper choice of empirical antibiotics for pneumococcal infection. Methods: From March 2014 to May 2018, children admitted to Asan Medical Center Childrens' Hospital with pneumococcal infection were subjected for evaluation of minimal inhibitory concentration (MIC) for ${\beta}-lactams$ and macrolide antibiotics. Patient's age, underlying disease, gender were retrospectively collected. Using Monte Carlo simulation model and MIC from our study, we predicted the rate of treatment success with amoxicillin treatment. Results: Sixty-three isolates were analyzed including 20.6% (n=13) of invasive isolates, and 79.4% (n=50) of non-invasive isolates; median age were 3.3 years old, and 87.3% of the pneumococcal infections occurred to children with underlying disease. Overall susceptibility rate was 49.2%, 68.2%, and 74.6% for amoxicillin, parenteral penicillin, and cefotaxime respectively. 23.8% and 9.5% of the isolates showed high resistance for amoxicillin, and cefotaxime. Only 4.8% (n=3) were susceptible to erythromycin. Monte Carlo simulation model revealed the likelihood of treatment success was 46.0% at the dosage of 90 mg/kg/day of amoxicillin. Conclusions: Recent pneumococcal isolates from pediatric patients with underlying disease revealed high resistance for amoxicillin and cefotaxime, and high resistance for erythromycin. Prudent choice of antibiotics based on the local data of resistance cannot be emphasized enough, especially in high risk patients with underlying disease, and timely vaccination should be implemented for prevention of the spread of resistant strains.