• Title/Summary/Keyword: Miniature pig

Search Result 83, Processing Time 0.025 seconds

Selection of Early Cleaved Embryos and Optimal Recipients to Improve Efficiency of Pig Cloning

  • Koo, Ok-Jae;Lee, Dong-Won;Kang, Jung-Taek;Kwon, Dae-Kee;Park, Hee-Jung;Park, Sol-Ji;Kim, Su-Jin;Jang, Goo;Lee, Byeong-Chun
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • Early cleavage is a reliable prognostic tool for successful embryo transfer in assisted reproduction because early cleaved embryo show better pregnancy rate after transfer. There for, preparation of good embryo recipient is important factor to optimize efficiency of pig cloning. The present study was performed to evaluate the effect of early cleavage on the in vivo development of cloned embryos and to analyze breed, parity and estrous synchrony to optimize recipient for pig cloning. In vitro matured porcine oocytes derived from local slaughterhouse and fibroblasts derived from miniature pig fetuses were used for somatic cell nuclear transfer (SCNT). Reconstructed embryos were transferred to recipient pigs on the same day of SCNT or after 1~2 days of in vitro culture for selecting early cleaved embryos. Breed, parity and date of standing estrous of recipients were recorded for analysis. After 25~35 days after embryo transfer pregnancy was diagnosed using ultrasonography, and pregnant recipients were monitored till delivery. Between purebred and crossbred, no significant difference was founded in both pregnancy and delivery rates. However, early cleaved embryos showed significantly higher pregnancy (46.2%) and delivery (12.8%) rates compared to non-selectively transferred group (24.8% and 4.5%, respectively). The results also showed that the recipients showing standing estrous on the same day of SCNT and less than 4 parities were most suitable for pig cloning.

Effects of L-Carnitine during the Storage of Fresh Semen in Miniature Pigs

  • Lee, Yeon-Ju;Lee, Sang-Hee;Lee, Eunsong;Lee, Seung Tae;Cheong, Hee-Tae;Yang, Boo-Keun;Lee, Seunghyung;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.171-177
    • /
    • 2014
  • L-Carnitine is an antioxidant for the transport of fatty acids in mitochondria and breakdown of lipids for metabolic energy. Some studies have suggested that carnitine improves sperm motility in mammals. The objective of this study was to investigate the effect of L-carnitine on the characteristics in fresh semen of miniature pigs. The collected fresh semen was stored in modena B medium with L-carnitine (0, 1.0, 2.0, and 4.0 mg/ml) for 10 days at $18^{\circ}C$. The semen quality of viability, acrosome reaction and mitochondria integrity was analyzed on 0, 3, 7, and 10 day of semen storage. The percentages of live and dying sperm were not different among treatment groups with different concentrations of L-carnitine during the storage period. In acrosome reaction analysis, when the sperm stored for 7 day, the percentages of live sperm with acrosome reaction were significantly (p<0.05) lower in 1 ($9.0{\pm}0.9%$), 2 ($7.6{\pm}0.2%$) or 4 mg/ml ($7.9{\pm}0.8%$) L-carnitine-treated groups than the control group (0 mg/ml L-carnitine) ($11.12{\pm}0.2%$). However, there were no difference in percentages of live sperm with acrosome reaction for 3 and 10 days of storage with each concentrations of L-carnitine. When sperm was stored for 3 and 10 days, the percentages of live sperm with mitochondria integrity were significantly higher in 2 mg/ml of L-carnitine-treated group than control group (p<0.05). In conclusion, the L-carnitine has a positive effect on acrosome reaction and mitochondria integrity in liquid state of fresh semen in miniature pigs.

Empirical Selection of Informative Microsatellite Markers within Co-ancestry Pig Populations Is Required for Improving the Individual Assignment Efficiency

  • Lia, Y.H.;Chu, H.P.;Jiang, Y.N.;Lin, C.Y.;Li, S.H.;Li, K.T.;Weng, G.J.;Cheng, C.C.;Lu, D.J.;Ju, Y.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.616-627
    • /
    • 2014
  • The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index ($F_{ST}$) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu's inbred populations. Inbreeding values ($F_{IS}$) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity ($H_E$) or $F_{ST}$, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, $F_{ST}$ and D-scores were used. Only 6 to 8 markers ranking $H_E$, $F_{ST}$ or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, $F_{ST}$ and allelic number of close lineage populations.

Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig (α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포)

  • Kim, Ji Woo;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.59-67
    • /
    • 2015
  • Galactose-${\alpha}1,3$-galactose (${\alpha}1,3$-Gal) epitope is synthesized at a high concentration on the surface of pig cells by ${\alpha}1,3$-galactosyltransferase gene (GGTA1). The ${\alpha}1,3$-Gal is responsible for hyperacute rejection in pig-to-human xenotransplantation. The generation of transgenic pigs as organ donors for humans is necessary to eliminate the GGTA1 gene that synthesize $Gal{\alpha}$(1,3)Gal. To prevent hyperacute graft rejection in pig-to-human xenotransplantation, previously, we developed ${\alpha}1,3$-galactosyltransferase gene-knock-out somatic cell by homologous recombination. In this study, we established cell lines of ${\alpha}1,3$-GT knock-out expressing hDAF and hHT gene from minipig fibroblasts to apply somatic cell nuclear transfer. The hDAF and hHT mRNA were expressed in the knock-in somatic cells and ${\alpha}1,3$-GT mRNA was suppressed. However, the knock-in somatic cells were increased resistance to human serum-mediated cytolysis.

Analysis of Natural Recombination in Porcine Endogenous Retrovirus Envelope Genes

  • Lee, Dong-Hee;Lee, Jung-Eun;Park, Nu-Ri;Oh, Yu-Kyung;Kwon, Moo-Sik;Kim, Young-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.585-590
    • /
    • 2008
  • Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

Measurement of Ultrasonic Field Propagation Characteristics in Biological Tissues Using a Two-dimensional Array Hydrophone (2차원 배열 수중청음기를 이용한 생체조직에서의 초음파 음장 전파특성 측정)

  • ;;;;Xiu-Fen Gong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.76-82
    • /
    • 2001
  • Because the biological tissue with inhomogeneous acoustic properties does not keep a particular shape, the measurement of propagation characteristics of ultrasonic fields by the conventional scanning method with a miniature hydrophone is difficult. In this study, a two-dimensional may hydrophone was fabricated using the PVDF (Polyvinylidene fluoride) piezo-electric film and a ultrasonic field measurement system with it was established. For the acoustic field produced by a circular plan transducer with center frequency of 2.25㎒ and 13㎜ in diameter, it was possible to make a fairly accurate field measurement using the hydrophone system. The attenuation coefficients at 2.25 ㎒ for biological tissues were 0.7∼1.3 dB/cm(average; 1.0 dB/cm) in bovine liver, 1.0∼1.8 dB/cm (average; 1.6 dB/cm) in pig liver, 0.9∼2,9 dB/cm(average: 2.1 dB/cm) in bovine muscles, 1.7∼3.3 dB/cm (average; 2.5 dB/cm) in pig muscles.

  • PDF

Alpha 1,3-Galactosyltransferase Deficiency in Miniature Pigs Increases Non-Gal Xenoantigens

  • Min, Gye-Sik;Park, Jong-Yi
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.511-518
    • /
    • 2011
  • To avoid hyperacute rejection of xenografts, ${\alpha}1,3$-galactosyltransferase knock-out (GalT KO) pigs have been produced. In this study, we examined whether Sia-containing glycoconjugates are important as an immunogenic non-Gal epitope in the pig liver with disruption of ${\alpha}1,3$-galactosyltransferase gene. The target cells were then used as donor cells for somatic cell nuclear transfer (scNT). A total of 1,800 scNT embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. Real-time RT-PCR and glycosyltransferase activity showed that ${\alpha}2,3$-sialyltransferase (${\alpha}2,3ST$) and ${\alpha}2,6$-sialyltransferase (${\alpha}2,6ST$) in the heterozygote GalT KO liver have higher expression levels and activities compared to controls, respectively. According to lectin blotting, sialic acidcontaining glycoconjugate epitopes were also increased due to the decreasing of ${\alpha}$-Gal in heterozygote GalT KO liver, whereas GalNAc-containing glycoconjugate epitopes were decreased in heterozygote GalT KO liver compare to the control. Furthermore, the heterozygote GalT KO liver showed a higher Neu5Gc content than control. Taken together, these finding suggested that the deficiency of GalT gene in pigs resulted in increased production of Neu5Gc-bounded epitopes (H-D antigen) due to increase of ${\alpha}2,6$-sialyltransferase. Thus, this finding suggested that the deletion of CMAH gene to the GalT KO background is expected to further prolong xenograft survival.

Effects of Ginsenoside-$Rg_1$ on Post-thawed Miniature Pig Sperm Motility, Mitochondria Activity, and Membrane Integrity

  • Hwang, You Jin;Kim, Dae Young
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • In this study, we used flow a cytometric assay to evaluate plasma membrane integrity and mitochondrial activity in post-thawed sperm that was supplemented with ginsenoside-$Rg_1$. Varying concentrations of ginsenoside-$Rg_1$ (0, 25, 50 and $100{\mu}M/ml$) were used in the extender during cryopreservation to protect the DNA of thawed sperm, thereby increasing the viability and motility rate as evaluated using a computer-assisted sperm analysis (CASA) method. The results derived from CASA were used to compare the fresh, control, and ginsenoside-$Rg_1$ groups. Sperm motility and the number of progressively motile sperm were significantly (p<0.05) higher in the $50{\mu}M/ml$ ginsenoside-Rg1 group ($61.0{\pm}4.65%$) than in the control ($46.6{\pm}7.02%$), $25{\mu}M/ml$ ($46.2{\pm}4.76%$), and $100{\mu}M/ml$ ginsenoside-$Rg_1$ ($52.0{\pm}1.90%$) groups. However, the velocity distribution of post-thawed sperm did not differ significantly. Membrane integrity and MMP staining as revealed using flow cytometry were significantly (p<0.05) higher ($91.6{\pm}0.82%$) in the $50{\mu}M/ml$ ginsenoside-$Rg_1$ group than in the other groups. Here, we report that ginsenoside-$Rg_1$ affects the motility and viability of boar spermatozoa. Moreover, ginsenoside-$Rg_1$ can be used as a protective additive for the suppression of intracellular mitochondrial oxidative stress caused by cryopreservation.

Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection

  • Se-A Lee;Hye Jeong Lee;Na-Yeon Gu;Yu-Ri Park;Eun-Ju Kim;Seok-Jin Kang;Bang-Hun Hyun;Dong-Kun Yang
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.53.1-53.12
    • /
    • 2023
  • Background: Mammalian orthoreovirus type 3 (MRV3), which is responsible for gastroenteritis in many mammalian species including pigs, has been isolated from piglets with severe diarrhea. However, the use of pig-derived cells as an infection model for swine-MRV3 has rarely been studied. Objectives: This study aims to establish porcine intestinal organoids (PIOs) and examine their susceptibility as an in vitro model for intestinal MRV3 infection. Methods: PIOs were isolated and established from the jejunum of a miniature pig. Established PIOs were characterized using polymerase chain reaction (PCR) and immunofluorescence assays (IFAs) to confirm the expression of small intestine-specific genes and proteins, such as Lgr5, LYZI, Mucin-2, ChgA, and Villin. The monolayered PIOs and three-dimensional (3D) PIOs, obtained through their distribution to expose the apical surface, were infected with MRV3 for 2 h, washed with Dulbecco's phosphate-buffered saline, and observed. Viral infection was confirmed using PCR and IFA. We performed quantitative real-time reverse transcription-PCR to assess changes in viral copy numbers and gene expressions linked to intestinal epithelial genes and antiviral activity. Results: The established PIOs have molecular characteristics of intestinal organoids. Infected PIOs showed delayed proliferation with disruption of structures. In addition, infection with MRV3 altered the gene expression linked to intestinal epithelial cells and antiviral activity, and these effects were observed in both 2D and 3D models. Furthermore, viral copy numbers in the supernatant of both models increased in a time-dependent manner. Conclusions: We suggest that PIOs can be an in vitro model to study the infection mechanism of MRV3 in detail, facilitating pharmaceutical development.