• Title/Summary/Keyword: Miniature actuator

Search Result 26, Processing Time 0.022 seconds

A Study on Partial Discharge Location in Insulating Oil using Optical Fiber Sensors (광섬유 센서를 이용한 절연유내의 부분방전 위치검출에 관한 연구)

  • 권태호;이종길;이준호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.838-841
    • /
    • 2003
  • This paper shows results on the application of optical fiber sensors(OFS) for locations of ultrasonic signals in silicon insulating oil. The OFS system based on the principle of Sagnac interferometry has been designed and established for this work. The hollowed cylindrical mandrel wound by single mode optical fiber was used as a sensing component and ultrasonic signals which simulate the partial discharge In the oil have been generated by PZT actuator operated with function generator. The experimental results shows that the OFS has a excellent performance for the PD location with resolutions less than 1$^{\circ}C$ error range in the miniature insulating oil tank.

Vibration Characteristics and Design Considerations of Micro Optical Disk Drives (초소형 광디스크 드라이브의 진동 특성 및 설계 고려 사항)

  • 윤동화;이승엽;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.791-798
    • /
    • 2001
  • As the form factor of the disk drive is decreased, many mechanical issues that are negligible in larger form factors, should be considered for the design of the miniature drives. This paper deals with basic research on vibration characteristics and design considerations of small disks and actuators. The natural frequencies of micro-sized disks with polycabonate and glass substrates are experimentally measured, being compared to FEM results. In order to investigate the effects of rotating speeds, airflow and disk size on power consumption. we measure power imposed to spindle motor when different optical disks are spins in vacuum chamber. Finally, The vibration characteristics of the micro actuator used in a IBM Microdrive are experimentally studied for the application to the basic design of micro optical disks.

  • PDF

PID-Force Control of a Artificial Finger with Distributed Force Sensor and Piezoelectric Actuator (분포센서를 가진 인공지의 PID-힘 제어)

  • Lee, Jae-Jung;Hong, Dong-Pyo;Chung, Tae-Jin;Chonan, Seiji;Chong, Kil-To;No, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.94-103
    • /
    • 1996
  • This paper is concerned with the theroretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is uniform flexible cantilever beam equipped with a distributed set of compact grasping force secnsors. Control action is applied by a qiexoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro-mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem which the finger is commanded to grasp an object The PID-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment.

  • PDF

Design and Performance Evaluation of Mini-Lightweight Piezo-Composite Actuators

  • Tran, Anh Kim;Yoon, Kwang-Joon
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.327-338
    • /
    • 2009
  • In this paper, through an evaluation process conducted on several designs of mini-LIPCA (Lightweight Piezo-Composite curved Actuator), an optimal design of a mini-LIPCA has been proposed. Comparing with the LIPCA-C2, the design of the mini-LIPCA comes with reduced overall size and a thinner active layer. Since a variation in the number and lay-up of fiber composite layers may strongly affect the performance of the device, one is able to configure several designs of mini-LIPCA. The evaluation process is then followed in order to determine a configuration which characterizes the possibly optimal performance. That is, a design of a mini-LIPCA is said to be optimal if it is capable of producing a maximum out-of-plane displacement. The size of the LIPCA to be investigated was selected to be $10\;mm\;{\times}\;20\;mm$ in which the thickness of PZT plate is about 0.1 mm. The thickness of glass/epoxy and carbon/epoxy are about 0.09 mm and 0.1 mm, respectively. The evaluation process has been conducted thoroughly, i.e., analytical estimation, numerical approximation and the experimental measurement are all involved. Firstly, the design equation was used to calculate essential parameters of proposed lay-up configurations. Secondly, ANSYS, a commercial FEA package, was utilized to estimate displacement outputs of the actuators upon being excited. Finally, experimental measurements were able to verify the predicted results.

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

Firing Data Calculation Algorithm for Smart Weapon System Under Non-standard Conditions (스마트무장 비 표준조건 사격제원 산출 알고리즘)

  • Moon, Kyujin;Jeong, Ui-Taek;Lee, Yongseon;Choi, Sungho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.233-240
    • /
    • 2022
  • The smart weapon system is a new weapon system of the future battlefield environment as a miniature guided weapon that performs precision strike missions through terminal phase guidance. However, it has small coverage to guide due to its low maneuverability because the smart weapon is controlled by using actuator of piezoelectric drive type due to the structural limitations. In this paper, we propose a firing data calculation algorithm under non-standard conditions to increase the effectiveness of the smart weapon. The proposed algorithm calculates firing data under non-standard conditions by calibrating firing data under standard conditions using information acquired in battlefield environments. The performance of the proposed algorithm is verified by numerical simulations under various conditions.