• Title/Summary/Keyword: Minerals Profile (Soil and Plants)

Search Result 1, Processing Time 0.017 seconds

Influence of Soil and Forage Minerals on Buffalo (Bubalus bubalis) Parturient Haemoglobinuria

  • Akhtar, M.Z.;Khan, A.;Sarwar, M.;Javaid, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.393-398
    • /
    • 2007
  • The present study was carried out to investigate the serum minerals profile in buffaloes (Bubalus bubalis) suffering from parturient haemoglobinuria (PHU) along with minerals profile of soils and fodders from the disease prone areas and their interrelationships. Serum samples were collected from 60 each of healthy and PHU affected buffaloes randomly selected from field cases. Serum samples were collected from each animal. Fifty composite soil samples were collected where PHU was prevalent. Fifty samples of fodders including leaves and stems being fed to the diseased buffaloes were collected. The difference in the levels of calcium and potassium between upper and lower soil surface of disease prone areas under study were statistically non-significant. The mean values of phosphorous, copper, iron, selenium and molybdenum in upper soil surface were significantly (p<0.05) higher than in lower soil surface. None of the fodders offered to the diseased animals met the dietary requirements of phosphorus and copper whereas none of the fodders was deficient in potassium, iron and selenium rather were having excess of potassium, iron and selenium. The concentration of calcium was adequate in lucerne, berseem, sarson and sorghum, while maize, sugarcane and wheat straw did not meet the required levels for dairy animals. Molybdenum contents in all fodders were adequate to meet the dietary requirements of the dairy buffaloes. Serum phosphorus, copper and selenium were significantly (p<0.001) lower whereas potassium, iron and molybdenum in buffaloes suffering from PHU were significantly (p<0.001) higher than in healthy buffaloes. It was concluded that phosphorous deficient soils play a major role by transferring this deficiency to plants and ultimately reaching to animals where hypophosphataemia is a consistent finding.