• Title/Summary/Keyword: Mineral potential

Search Result 663, Processing Time 0.028 seconds

Mineral Composition, Depositional Environment and Spectral Characteristics of Oil Shale Occurring in Dundgobi, Mongolia (몽골 돈디고비지역에서 산출되는 오일셰일의 광물조성, 퇴적환경 및 분광학적 특성)

  • Badrakh, Munkhsuren;Yu, Jaehyung;Jeong, Yongsik;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.83-93
    • /
    • 2015
  • This study investigated genetic, mineralogical and spectral characteristics of oil shale and coal samples in Dundgobi area, Mongolia. Based the Rock/Eval and Total organic carbon (TOC) analysis, kerogen type, hydrogen quantity, thermal maturity and depositional environment were confirmed. Moreover, the mineral composition of oil shale and coal samples were analyzed by XRD and spectroscopy. The result of Rock Eval/TOC analysis revealed that the samples of Eedemt deposit are immature to mature source rocks with sufficient hydrocarbon potential, and the kerogen types were classified as Type I, Type II and Type III kerogen. On the other hand, the samples from Shine Us Khudag deposit were mature with good to very good hydrocarbon potential rocks where kengen types are defined as Type I, Type II/III and Type III kerogen. According to the carbon and sulfur contents, the depositional environment of the both sites were defined as a freshwater depositional environment. The XRD analysis revealed that the mineral composition of oil shale and coal samples were quartz, calcite, dolomite, illite, kaolinite, montmorillonite, anorthoclase, albite, microcline, orthoclase and analcime. The absorption features of oil shale samples were at 1412 nm and 1907 nm by clay minerals and water, 2206 nm by clay minerals of kaolinite and montmorillonite and 2306 nm by dolomite. It is considered that spectral characteristics on organic matter content test must be tested for oil shale exploration using remote sensing techniques.

Utilizing Abandoned Mines in Regional Development: Feasibility of Underground Data Centers and Public Sports Facilities (폐광지역발전을 위한 폐광산 활용방안 연구: 지하 데이터센터 및 공공체육시설로의 운용성 평가)

  • Hyeong-Geol Kim;Ganghui Kim;Sanghyun Bin;Won-Sik Woo;Jongmun Cha;Chang-Uk Hyun
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.737-753
    • /
    • 2023
  • Abandoned mines represent unused space resulting from resource use and changes in industrial environments. Efforts are underway to repurpose such underground spaces, leveraging their unique attributes of temperature stability, shading, and security. This study aimed to assess the feasibility of operating high-demand data centers and public sports facilities as potential recycling options for abandoned mine spaces. The status of data centers located in abandoned mines abroad was examined, including their operational technology capitalizing on the advantages of underground spaces. Considering the varying sizes of underground spaces in different types of abandoned mine in South Korea, the suitability of installing facilities for 12 different sports was evaluated for potential contributions to the health and welfare of local residents. The utilization of abandoned mine spaces as data centers and public sports facilities is expected to not only recycle industrial heritage but also to allow new development opportunities for local communities.

Global Trend of Cement Production and Utilization of Circular Resources

  • Lim, Chaeyeon;Jung, Euntae;Lee, Seongho;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.57-63
    • /
    • 2020
  • In this paper, we reported that the global trend of cement production and utilization as raw materials and as a fuel. As we know, cement is one of the significant materials required for the construction industry. The recent trend of rising urbanization, both the cement and construction industry played a vital role. The cement industry is a major sustainable infrastructure for the countries. Currently, China producing cement half of the world's cement production. During the year 2018, Korea producing cements nearly 57.5 million metric tons. Waste materials are used as circular resources and also having tremendous benefits for cement production. Another important use of these circular resources is fuel for the cement industry. There is a large potential benefit of the cement industry, but it's creating a severe environmental threat. The cement industry contributes to the major emissions of CO2. This leads the global warming. As per the Paris agreement, the Korean government initiated the recycling policy of waste materials and also the utilization of circular resources for the prevention of limited natural resources and also the global warming effect.

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Effects of ursolic acid on muscle mass and bone microstructure in rats with casting-induced muscle atrophy

  • Kang, Yun Seok;Noh, Eun Bi;Kim, Sang Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.45-49
    • /
    • 2019
  • [Purpose] Recent studies suggest that ursolic acid (UA) is a potential candidate for a resistance exercise mimetic that can increase muscle mass and alleviate the deleterious effect of skeletal muscle atrophy on bone health. However, these studies evaluated the effects of UA on skeletal muscle and bone tissues, and they have not verified whether such effect could occur concurrently on muscle and bone, as is the case with resistance exercise. Thus, the aim of this study was to analyze the effect of UA injection on muscle mass and bone microstructure using an animal model of atrophy to demonstrate the potential of UA as a resistance exercise mimetic. [Methods] The immobilization (IM) method was used on the left hindlimb of Sprague Dawley (SD) rats for 10 days to induce muscle atrophy, whereas the right hindlimb was used as an internal control (IC). The animal models were divided into two groups, SED (sedentary, n=6) and UA (n=6) to demonstrate the effect of UA on atrophic skeletal muscles. The UA group received a daily intraperitoneal injection of UA (5 mg/kg/day) for 8 weeks. After 10 days of IM, the data collected for the IC were compared with that of IM to determine whether muscle atrophy might occur. [Results] Muscle atrophy was induced and bone mineral density (BMD) decreased significantly. The 8-week UA treatment significantly increased the gastrocnemius muscle mass compared to the SED group. In regard to the effect of UA on bones, negative results such as a decrease in BMD, trabecular bone volume fraction, and trabecular number, and an increase in trabecular separation, were observed in the SED group, but no such difference was observed in the UA group. No significant difference was observed in atrophic hindlimbs between SED and UA groups. [Conclusion] These results alone are insufficient to suggest that UA is a potential resistance exercise mimetic for atrophic skeletal muscle and weakened bone. However, this study will help determine the potential of UA as a resistance exercise mimetic.

Characteristics of the Turbidity Change of Clay Particulate Matter according to Its Surface Electrokinetic Behavior (점토성 광물입자의 표면 전기적 거동에 따른 탁도 변화 특성)

  • O, Sejin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.326-331
    • /
    • 2010
  • Montmorillonite is one of representative inorganic clay particles. As the characteristics of clay particulate matter in aqueous environment determine the efficiencies of wastewater treatment and some industrial operations, it is essential to understand its aquatic behavior in relation with turbidity. The change of electrokinetic potential of montmorillonite suspension shows that it tends to negatively increase as the pH of suspension increases. In addition, it is observed that its potential is around 0mV when the solution pH is ca. 5. The turbidity of suspension is shown to be very low when pH is lower than its isoelectric point. However, the turbidity gradually enhances according to beyond isoelectric point. These results reveal that the correlation between electrokinetic potential and turbidity for clay mineral suspension is peculiar which should be fundamentally considered for systematic treatment of wastewater.

Distribution of Fe-Mn Ore in Ugii Nuur, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 우기누르 철-망간 분포 특성)

  • Park, Gyesoon;Lee, Bum-Han;Kim, In-Joon;Heo, Chul-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mineral Resources Authority of Mongolia (MRAM) performed a joint survey on Ugii Nuur Fe-Mn mineralized area. Following the survey, we carried out magnetic survey and 3D magnetic susceptibility inversion. Based on the inversion results, basic feasibility study and 3D imaging of Fe-Mn mineralized area were performed using 3D geological modeling technique. Using the distribution of total magnetic field data, we were confirmed for the possibility of horizontal extension of ore bodies from surface outcrops. The 3D magnetic susceptibility model, which is highly related with Fe content, analyzed by inversion shows that the ore bodies of Deposit 1 and Deposit 2 are extended to the underground and ore bodies that are not exposed on the surface are largely distributed in the underground. If we perform the integration analysis using this magnetic susceptibility model and the ore grade data analyzed by drilling survey, it is possible to carry out the effective potential evaluation of Ugii Nuur Fe-Mn ore deposit.

Studies on Functional Salt Fortified with Seaweed Components (해조성분 강화 기능성소금에 대한 연구)

  • Byun, Jee-Young;Namgung, Bae;Jo, Jin-Ho;Do, Jung-Ryong;In, Jae-Pyung;Kim, Young-Myoung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.152-157
    • /
    • 2007
  • In an attempt to develop functional salts having beneficial health effects, we experimentally prepared three functional salts by fortification with soluble seaweed minerals (Hizikia mineral salt, HMS), fucoidan (fucoidan salt, FS) and laver extracts (laver salt, LS). To characterize the functional salts, their physicochemical properties and in vitro functionalities, such as pH, color, mineral composition, solubility, oxidation-reduction potential, sensory properties, angiotesin converting enzyme (ACE) inhibitory activity, and bile acid binding capacity were investigated. The functional salts revealed slightly lower NaCl concentrations, but showed a variety of pH values compared with conventional table salt. The pH values of HMS, FS, and LS were 11.3, 6.8, and 6.5, respectively. The oxidation-reduction potentials (ORP) of the functional salts varied from -229 mV to 38 mV, significantly lower than refined salt. The functional salts were significantly darker in color than refined salt, and the mineral composition of HMS was considerably enriched compared to refined salt, particularly in potassium ion. As a result of the sensory evaluation, FS and LS were comparatively palatable in saltiness, pungency, bitterness, and overall acceptance compared with refined salt. It was also found that one functional salt had ACE inhibitory activity (54.8% in LS) and another had bile acid binding capacity (80.7% in FS).