• Title/Summary/Keyword: Mineral admixture

Search Result 262, Processing Time 0.017 seconds

Flexural and Workable Properties of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유 보강 콘크리트의 휨 및 유동 특성)

  • Park Choon-Keun;Noh Myung-Hyun;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.543-550
    • /
    • 2005
  • In the present work, modulus of rupture (MOR), flexural toughness properties $(I_{30}\;and\;W_{2.0})$ and workability (slump) of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber), and replaced with a fine mineral admixture such as silica fume (SF) are characterized through the analysis of variance (ANOVA). Data of MOR, $I_{30}(or W_{2.0})$ and slump are used as the characteristic values to estimate flexural performance and workable property of HPHFRC. Specially, an experimental design was Planned according to the fractional orthogoanl nay method to reduce experimental number of times. The experimental results show that steel fiber is a considerable significant factor in MOR and I30 $(W_{2.0})$. Based on the significance of experimental factors about each characteristic factors, the following evaluation can be used: Experiment factors which reduce slump most remarkably are carbon fiber, steel fiber, silica fume order.; Those that improve MOR most significantly are silica fume $({\fallingdotseq}\;carbon\;fiber)$, steel fiber order; Those that increase flexural toughness most distinctly are silica fume, carbon fiber, steel fiber order. It is obtained that the combination of steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$ is the experimental condition that improve MOR and flexural toughness excellently with workability ensured within the experiment.

Evaluation on Mechanical Performance and Chloride Ion Penetration Resistance of On-Site Shotcrete Made with Slurry-Type Accelerator (슬러리형 급결제를 활용한 현장적용 숏크리트의 역학적 성능 및 염해저항성 평가)

  • Kim, Hyun-Wook;Yoo, Yong-Sun;Han, Jin-Kyu;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.507-515
    • /
    • 2018
  • The purpose of this research is to develop a slurry-type accelerator that contains various beneficial properties such as reduction of dust generation, lower alkalinity, early age strength development, etc., and uses such slurry type accelerator to produce high performance shotcrete that present excellent resistant against chloride ion penetration. In this work, shotcrete mixtures of 0.44 and 0.338 water-to-binder ratio (w/b) were produced at construction site using slurry-type accelerator. The mechanical properties and chloride ion penetration resistance of such shotcrete (including base concrete) were evaluated. According to the experimental results, the slurry-type accelerator was successfully used to produce both w/b 0.44 and 0.338 shotcretes. The 1 day and 28 day compressive strength of shotcrete were found to be closer to or higher than 10MPa and 40MPa, respectively. The w/b 0.338 shotcrete that used 40% replacement of blast furnace slag showed lower compressive strength than w/b 0.44 shotcrete without any mineral admixture at 1 day. However, the compressive strength with 40% blast furnace slag increased significantly at 28 day. Moreover, there was more than 50% increase in chloride ion penetration resistance with blast furnace slag, showing its strong potential for higher performance shotcrete application.