• Title/Summary/Keyword: Mineral Filler

Search Result 46, Processing Time 0.021 seconds

Physical Properties of Sulfur Concrete with Modified Sulfur Binder (유황개질 바인더를 사용한 유황 콘크리트의 물리적 특성)

  • Bae, Sung Geun;Gwon, Seong Woo;Kim, Se Won;Cha, Soo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.763-771
    • /
    • 2014
  • Recently, a huge amount of sulfur has been produced as a byproduct of petroleum refining processes in Korea. Sulfur concrete is made of modified sulfur binder instead of cement paste, which has advantages of reducing $CO_2$ emission from cement industry as well as utilizing surplus sulfur. Also, sulfur concrete is a sustainable material that can be repetitively recycled. In this study, the physical properties of sulfur concrete are experimentally investigated. From the test results, sulfur concrete showed compressive strengths higher than at least 50MPa. Also, the unit weight, modulus of elasticity and splitting tensile strength of sulfur concrete was similar to that of Portland cement concrete (PCC). The coefficient of thermal expansion of sulfur concrete was a little larger than that of Portland cement concrete and sulfur concrete with mineral filler is helpful to lower the coefficient of thermal expansion. recycled aggregate sulfur concrete resulted in a slight reduction in the compressive strength, but sulfur concrete with recycled aggregate can achieve the high strength characteristics.

A study on the effects of fine sludge powder addition on portland cement-limestone sludge system (포틀랜드시멘트-석회석슬러지계에서의 슬러지 미분말첨가반응 효과에 대한 연구)

  • Ahn, Ji-Whan;Kim, Hwan
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.27-31
    • /
    • 1994
  • We tested the limestone sludge produced in Pohang Iron & Steel Co., Ltd. as a filler powder for the effective use of portland cement. Hydration process was investigated by measuring the hydration rate, the amounts of non-evaporable water and compressive strength of cement-limestone sludge paste prepared by mixing limes-tone sludge with cement. The results obtained in this study can be summarized as follows: 1. There is no significant difference between the cases of adding up to 10% limestone sludge and those of unmixed cement system. However the reaction rate increases in the 5% limestone sludge system(due to the effects of fine). 2. The compressive strength increases proportionally with increasing the measured amount of non-evaporable water, Adding 5% limestone sludge also increases the strength a little higher, and the compressive strength and calcium silicate hydrates. In the case of the mixed limestone sludge, $2\theta$=$11.7^{\circ}$ peak appears in the samples of 28 days hydration. This peak indicted the presence of calcium carboaluminate hydrate. Although limestone sludge is generally regarded as a inert materials, some kinds of cement can produce a calcium carboaluminate by reacting with aluminate in cement pastes.

  • PDF

A Basic Study on the Development of Backfill Material with Fly Ash and Bottom Ash of Circulating Fluid Bed Combustion (순환유동층보일러의 Fly Ash, Bottom Ash를 활용한 채움재 개발에 관한 기초연구)

  • Cho, Yong-Kwang;Lee, Yong-Mu;Nam, Seong-Young;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the Controlled Low Strength Material (CLSM) was investigated to utilize the bottom ash and fly ash generated in the Circulating Fluidized Bed Combustor (CFBC). It was confirmed that the CFBC fly ash (CFBC-F) and CFBC bottom ash (CFBC-B) had an irregular particle shape through SEM measurement. According to the results of the hazard analysis, it was also confirmed that they were environmentally safe. In the case of mixing with CFBC-F, the unit quantity was increased. Regarding the rate of change of length, shrinkage in the range of -0.05~0.50% occurred in the air dry curing condition and expansion in the range of 0.1~0.6% in the sealed curing condition. Compressive strength was increased in the sealed curing condition compared to the air dry curing condition because there was enough moisture for hydration reaction in the long term. Therefore, the results of this study are likely be used as basic research data of mine filler materials.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.

Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill (고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석)

  • Kim, Jin Woo;Lee, Bum Han;Kim, Jin Cheul;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Talc, hydrous magnesium phyllosilicate, is one of the most popular industrial minerals due to their chemical stability and adsorptivity. While micro-sized talc has long been used as a filler and coating, nano-sized talc recently is attracting attention as additives for improving the stability of nanocomposites. In this study, we produced the nano-sized talc powder by mechanical method using high energy ball mill and investigated the changes in particle size and crystallinity with increasing milling time up to 720 minutes. X-ray diffraction results show that the peak width of talc gradually as the milling proceeded, and after 720 minutes of pulverization, the talc showed an amorphous-like X-ray diffraction pattern. Lase diffraction particle size analysis presents that particle size of talc which was ${\sim}12{\mu}m$ decreased to ${\sim}0.45{\mu}m$ as the milling progressed, but no significant reduction of particle size was observed even after grinding for 120 minutes or more. BET specific surface area, however, steadily increases up to the milling time of 720 minutes, indicating that the particle size and morphology change steadily as the milling progressed. Scanning electron microscope and transmission electron microscope images shows that layered particles of about 100 to 300 nm was aggregated as micro-sized particles after pulverization for 720 minutes. As the grinding time increases, the particle size and morphology of talc continuously change, but the nano-sized talc particles form micro sized agglomerates. These results suggest that there is a critical size along the a, b axes in which the size of plates is reduced even though the grinding proceeds, and the reduction of plate thickness along the c axis leads the increase in specific surface area with further grinding. This study could enhance the understanding of the mechanism of the formation of nano-sized talc by mechanical grinding.

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF